随着人工智能技术迅猛发展并逐步渗透于组织管理,本期专刊旨在引发学者对于人工智能导致的组织管理变革的关注,并推动相关研究的开展。前沿技术在提高组织效能、赋能组织管理的同时,也带来了人类员工被替代、员工倦怠感提升等诸多新挑战。探究人工智能时代下组织管理的新现象、新规律、新构念和新理论,是促进人工智能在组织管理中发挥积极价值的关键桥梁。本期专刊共接受了8篇与人工智能和组织管理相关的论文,探讨的话题主要围绕AI决策、AI使用偏见、人机互动、AI符号化、数字化变革沟通等方面。此外,本文系统梳理和归纳了现有关于人与AI关系的研究脉络,并剖析了2024年美国管理学会AI与组织管理相关文章的研究趋势,以期为未来研究方向提供启示。在此基础上,我们倡议未来研究立足于人工智能在企业运作与管理中的真实问题,进行跨学科与跨领域合作,全面而深入地探讨人机协作等科学问题,以助力企业在人工智能浪潮下实现长远且高质量的发展。
人与人工智能的研究及其对组织管理的意义
摘要
参考文献
3 董韫韬, 汤明月, 陈晓萱. 数字化变革中的沟通措辞——机会与威胁措辞影响员工技术采纳的机制与边界条件[J]. 外国经济与管理, 2024, 46(10):135-152.
4 段瑞焜, 吴以琪. 差异、偏见还是不公:企业数智化对女性领导任用的影响研究[J]. 外国经济与管理, 2024, 46(10):39-54.
5 韩明燕. 赵静幽, 李志. 员工—AI合作与越轨创新: 一个被调节的双路径模型[J]. 外国经济与管理, 2024, 46(10):89-104.
6 何勤, 刘明泽, 李鑫悦. 人工智能会引发员工的知识隐藏行为吗?——基于相对剥夺感的理论视角[J]. 外国经济与管理, 2024, 46(10):55-70.
7 洪贝尔. 毛江华, 郭紫俊, 等. 领导的AI时尚: AI符号化与领导效能[J]. 外国经济与管理, 2024, 46(10):121-134.
8 李飞飞著, 赵灿译. 我看见的世界: 李飞飞自传[M]. 北京: 中信出版集团, 2024.
9 李晓曼, 陈丽. 人机交互对工作创新行为的影响机制研究——来自智慧电厂的证据[J]. 外国经济与管理, 2024, 46(10):105-120.
10 梁宇畅, 何刚, 金孟子. 使用生成式人工智能对员工创造力评价的影响[J]. 外国经济与管理, 2024, 46(10):71-88,104.
14 魏昕, 黄鸣鹏, 李欣悦. 算法决策、员工公平感与偏差行为: 决策有利性的调节作用[J]. 外国经济与管理, 2021, 43(11): 56-69.
15 谢小云, 左玉涵, 胡琼晶. 数字化时代的人力资源管理: 基于人与技术交互的视角[J]. 管理世界, 2021, 37(1): 200-216,13. DOI:10.3969/j.issn.1002-5502.2021.01.013
16 张亚莉, 李辽辽, 丁振斌. 组织管理中的人工智能决策: 述评与展望[J]. 外国经济与管理, 2024, 46(10):18-38.
17 张志学, 华中生, 谢小云. 数智时代人机协同的研究现状与未来方向[J]. 管理工程学报, 2024, 38(1): 1-13.
18 张志学, 赵曙明, 施俊琦, 等. 数字经济下组织管理研究的关键科学问题——第254期“双清论坛”学术综述[J]. 中国科学基金, 2021, 35(5): 774-781.
19 Allen R T, Choudhury P. Algorithm-augmented work and domain experience: The countervailing forces of ability and aversion[J]. Organization Science, 2021, 33(1): 149-169.
20 Anthony C, Bechky B A, Fayard A L. “Collaborating” with AI: Taking a system view to explore the future of work[J]. Organization Science, 2023, 34(5): 1672-1694. DOI:10.1287/orsc.2022.1651
21 Bai B, Dai H C, Zhang D J, et al. The impacts of algorithmic work assignment on fairness perceptions and productivity: Evidence from field experiments[J]. Manufacturing & Service Operations Management, 2022, 24(6): 3060-3078.
22 Balasubramanian N, Ye Y, Xu M T. Substituting human decision-making with machine learning: Implications for organizational learning[J]. Academy of Management Review, 2022, 47(3): 448-465. DOI:10.5465/amr.2019.0470
23 Bankins S, Ocampo A C, Marrone M, et al. A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice[J]. Journal of Organizational Behavior, 2024, 45(2): 159-182. DOI:10.1002/job.2735
24 Bayer R C, Renou L. Interacting with man or machine: When do humans reason better?[J]. Management Science, 2024, doi: 10.1287/mnsc.2023.03315.
25 Bloom N, Han R B, Liang J. Hybrid working from home improves retention without damaging performance[J]. Nature, 2024, 630(8018): 920-925. DOI:10.1038/s41586-024-07500-2
26 Bodrožić Z, Adler P S. The evolution of management models: A Neo-schumpeterian theory[J]. Administrative Science Quarterly, 2018, 63(1): 85-129. DOI:10.1177/0001839217704811
27 Bonnefon J F, Shariff A, Rahwan I. The social dilemma of autonomous vehicles[J]. Science, 2016, 352(6293): 1573-1576. DOI:10.1126/science.aaf2654
28 Brynjolfsson E, McAfee A. The second machine age: Work, progress, and prosperity in a time of brilliant technologies[M]. New York: W. W. Norton & Company, 2014.
29 Budhwar P, Malik A, De Silva M T T, et al. Artificial intelligence–challenges and opportunities for international HRM: A review and research agenda[J]. The International Journal of Human Resource Management, 2022, 33(6): 1065-1097. DOI:10.1080/09585192.2022.2035161
30 Chowdhury S, Dey P, Joel-Edgar S, et al. Unlocking the value of artificial intelligence in human resource management through AI capability framework[J]. Human Resource Management Review, 2023, 33(1): 100899. DOI:10.1016/j.hrmr.2022.100899
31 Cowls J, Tsamados A, Taddeo M, et al. The AI gambit: Leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations[J]. AI & Society, 2023, 38(1): 283-307.
32 Davenport T H, Kirby J. Just how smart are smart machines?[J]. MIT Sloan Management Review, 2016, 57(3): 21-25.
33 Dawes R M. The robust beauty of improper linear models in decision making[J]. American Psychologist, 1979, 34(7): 571-582. DOI:10.1037/0003-066X.34.7.571
34 Di Vaio A, Palladino R, Hassan R, et al. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review[J]. Journal of Business Research, 2020, 121: 283-314. DOI:10.1016/j.jbusres.2020.08.019
35 Dietvorst B J, Simmons J P, Masse C. Algorithm aversion: People erroneously avoid algorithms after seeing them err[J]. Journal of Experimental Psychology: General, 2015, 144(1): 114-126. DOI:10.1037/xge0000033
36 Dietvorst B J, Simmons J P, Massey C. Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them[J]. Management Science, 2016, 64(3): 1155-1170.
37 Felten E, Raj M, Seamans R. Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses[J]. Strategic Management Journal, 2021, 42(12): 2195-2217. DOI:10.1002/smj.3286
38 Gama F, Magistretti S. Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications[J]. Journal of Product Innovation Management, 2023, doi: 10.1111/jpim.12698.
39 Glikson E, Woolley A W. Human trust in artificial intelligence: Review of empirical research[J]. Academy of Management Annals, 2020, 14(2): 627-660. DOI:10.5465/annals.2018.0057
40 Han Y N, Qiu Z Y, Cheng J L, et al. When teams embrace AI: Human collaboration strategies in generative prompting in a creative design task[A]. Proceedings of CHI conference on human factors in computing systems[C]. Honolulu: ACM, 2024.
41 Haque A, Milstein A, Fei-Fei L. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 2020, 585(41586): 193-202.
42 Jia N, Luo X M, FANG Z, et al. When and how artificial intelligence augments employee creativity[J]. Academy of Management Journal, 2024, 67(1): 5-32. DOI:10.5465/amj.2022.0426
43 Kanarik K J, Osowiecki W T, Lu Y, et al. Human–machine collaboration for improving semiconductor process development[J]. Nature, 2023, 616(7958): 707-711. DOI:10.1038/s41586-023-05773-7
44 Kellogg K C, Valentine M A, Christin A. Algorithms at work: The new contested terrain of control[J]. Academy of Management Annals, 2020, 14(1): 366-410. DOI:10.5465/annals.2018.0174
45 Langer M, Landers R N. The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers[J]. Computers in Human Behavior, 2021, 123: 106878. DOI:10.1016/j.chb.2021.106878
46 Lei Y W, Kim R. Automation and augmentation: Artificial intelligence, robots, and work[J]. Annual Review of Sociology, 2024, 50: 251-272. DOI:10.1146/annurev-soc-090523-050708
47 Li N, Zhou H K, Deng W M, et al. When advanced AI isn't enough: Human factors as drivers of success in generative AI-Human collaborations[EB/OL]. https://ssrn.com/abstract=4738829, 2024-02-26.
48 Logg J M, Minson J A, Moore D A. Algorithm appreciation: People prefer algorithmic to human judgment[J]. Organizational Behavior and Human Decision Processes, 2019, 151: 90-103. DOI:10.1016/j.obhdp.2018.12.005
49 Longoni C, Bonezzi A, Morewedge C K. Resistance to medical artificial intelligence[J]. Journal of Consumer Research, 2019, 46(4): 629-650. DOI:10.1093/jcr/ucz013
50 Manickam P, Mariappan S A, Murugesan S M, et al. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare[J]. Biosensors, 2022, 12(8): 562. DOI:10.3390/bios12080562
51 Narayanan D, Nagpal M, McGuire J, et al. Fairness perceptions of artificial intelligence: A review and path forward[J]. International Journal of Human–Computer Interaction, 2024, 40(1): 4-23. DOI:10.1080/10447318.2023.2210890
52 Noy S, Zhang W. Experimental evidence on the productivity effects of generative artificial intelligence[J]. Science, 2023, 381(6654): 187-192. DOI:10.1126/science.adh2586
53 Pereira V, Hadjielias E, Christofi M, et al. A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective[J]. Human Resource Management Review, 2023, 33(1): 100857. DOI:10.1016/j.hrmr.2021.100857
54 Qin X, Lu J G, Chen C, et al. Artificial intelligence quotient (AIQ)[EB/OL]. https://ssrn.com/abstract=4787320, 2024-04-08.
55 Raisch S, Krakowski S. Artificial intelligence and management: The automation–augmentation paradox[J]. Academy of Management Review, 2021, 46(1): 192-210. DOI:10.5465/amr.2018.0072
56 Rostain M, Huising R. Vicarious coding: Breaching computational opacity in the digital era[J]. Academy of Management Journal, 2024, 67(2): 359-381. DOI:10.5465/amj.2021.0150
57 Savadjiev P, Chong J, Dohan A, et al. Demystification of AI-driven medical image interpretation: Past, present and future[J]. European Radiology, 2019, 29(3): 1616-1624. DOI:10.1007/s00330-018-5674-x
58 Tang P M, Koopman J, McClean S T, et al. When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory[J]. Academy of Management Journal, 2022, 65(3): 1019-1054. DOI:10.5465/amj.2020.1516
59 Vrontis D, Christofi M, Pereira V, et al. Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review[J]. The International Journal of Human Resource Management, 2022, 33(6): 1237-1266. DOI:10.1080/09585192.2020.1871398
60 Wang W G, Gao G D, Agarwal R. Friend or Foe? Teaming between artificial intelligence and workers with variation in experience[J]. Management Science, 2023, 70(9): 5753-5775, DOI:10.1287/mnsc.2021.00588
61 Wilson H J, Daugherty P R. Collaborative intelligence: Humans and AI are joining forces[J]. Harvard Business Review, 2018, 96: 114-123.
引用本文
张志学, 贺伟. 人与人工智能的研究及其对组织管理的意义[J]. 外国经济与管理, 2024, 46(10): 3-17.
导出参考文献,格式为:
下一篇:女性高管领导力研究:综述与展望