本文聚焦于组织管理领域的AI决策问题,对2018—2024年发表的176篇国内外文献进行了系统回顾,剖析组织决策中AI与人类的复杂互动关系。文章从决策要素、决策过程和决策结果三个维度揭示了AI决策与人类决策的本质差异,并提炼出两种AI与人类决策的交互模式:替代决策和合作决策。替代决策的相关研究主要关注不同决策主体之间的差异及其引发的潜在影响;合作决策的相关研究则更加关注合作机制设计、AI对合作决策的影响与合作效果的优化。在此基础上,按照“决策模式选择—决策过程—决策结果”的逻辑构建了一个AI赋能下的综合决策框架,充分考虑了替代决策与合作决策的重叠性和互补性,并强调了人与AI协同的重要性。最后,从AI决策的前因后果、决策机制设计以及中国特殊情境的影响三个方面对未来研究进行了展望,为推动AI从低阶感知智能向高阶决策智能的跃迁提供参考。
组织管理中的人工智能决策:述评与展望
摘要
参考文献
2 蒋路远, 曹李梅, 秦昕, 等. 人工智能决策的公平感知[J]. 心理科学进展, 2022, 30(5): 1078-1092.
7 孙羽佳, 苏凇, 唐红红. 基于信任视角的消费者算法态度研究述评与展望[J]. 经济管理, 2023, 45(10): 188-208.
9 谢才凤, 邬家骅, 许丽颖, 等. 算法决策趋避的过程动机理论[J]. 心理科学进展, 2023, 31(1): 60-77. DOI:10.3969/j.issn.1671-3710.2023.1.xlxdt202301006
10 曾大军, 张柱, 梁嘉琦, 等. 机器行为与人机协同决策理论和方法[J]. 管理科学, 2021, b,34(6): 55-59. DOI:10.3969/j.issn.1672-0334.2021.06.005
11 Alon-Barkat S, Busuioc M. Human–AI interactions in public sector decision making: “Automation bias” and “selective adherence” to algorithmic advice[J]. Journal of Public Administration Research and Theory, 2023, 33(1): 153-169. DOI:10.1093/jopart/muac007
12 Araujo T, Helberger N, Kruikemeier S, et al. In AI we trust? Perceptions about automated decision-making by artificial intelligence[J]. AI & Society, 2020, 35: 611-623.
13 Balasubramanian N, Ye Y, Xu M T. Substituting human decision-making with machine learning: Implications for organizational learning[J]. Academy of Management Review, 2022, 47(3): 448-465. DOI:10.5465/amr.2019.0470
14 Bigman Y E, Yam K C, Marciano D, et al. Threat of racial and economic inequality increases preference for algorithm decision-making[J]. Computers in Human Behavior, 2021, 122: 106859. DOI:10.1016/j.chb.2021.106859
15 Bonezzi A, Ostinelli M, Melzner J. The human black-box: The illusion of understanding human better than algorithmic decision-making[J]. Journal of Experimental Psychology: General, 2022, 151(9): 2250-2258. DOI:10.1037/xge0001181
16 Boyacı T, Canyakmaz C, de Véricourt F. Human and machine: The impact of machine input on decision making under cognitive limitations[J]. Management Science, 2023, 70(2): 1258-1275.
17 Cao G M, Duan Y Q, Edwards J S, et al. Understanding managers' attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making[J]. Technovation, 2021, 106: 102312. DOI:10.1016/j.technovation.2021.102312
18 Costello A M, Down A K, Mehta M N. Machine + man: A field experiment on the role of discretion in augmenting AI-based lending models[J]. Journal of Accounting and Economics, 2020, 70(2-3): 101360. DOI:10.1016/j.jacceco.2020.101360
19 Dietvorst B J, Bartels D M. Consumers object to algorithms making morally relevant tradeoffs because of algorithms’ consequentialist decision strategies[J]. Journal of Consumer Psychology, 2022, 32(3): 406-424. DOI:10.1002/jcpy.1266
20 Duan Y Q, Edwards J S, Dwivedi Y K. Artificial intelligence for decision making in the era of big data – evolution, challenges and research agenda[J]. International Journal of Information Management, 2019, 48: 63-71. DOI:10.1016/j.ijinfomgt.2019.01.021
21 Dwivedi Y K, Hughes L, Ismagilova E, et al. Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy[J]. International journal of information management, 2021, 57: 101994. DOI:10.1016/j.ijinfomgt.2019.08.002
22 Fu R S, Aseri M, Singh P V, et al. “Un” fair machine learning algorithms[J]. Management Science, 2022, 68(6): 4173-4195. DOI:10.1287/mnsc.2021.4065
23 Fügener A, Grahl J, Gupta A, et al. Cognitive challenges in human–artificial intelligence collaboration: Investigating the path toward productive delegation[J]. Information Systems Research, 2022, 33(2): 678-696. DOI:10.1287/isre.2021.1079
24 Grimmelikhuijsen S. Explaining why the computer says no: Algorithmic transparency affects the perceived trustworthiness of automated decision-making[J]. Public Administration Review, 2023, 83(2): 241-262. DOI:10.1111/puar.13483
25 Haesevoets T, De Cremer D, Dierckx K, et al. Human-machine collaboration in managerial decision making[J]. Computers in Human Behavior, 2021, 119: 106730. DOI:10.1016/j.chb.2021.106730
26 Höddinghaus M, Sondern D, Hertel G. The automation of leadership functions: Would people trust decision algorithms?[J]. Computers in Human Behavior, 2021, 116: 106635. DOI:10.1016/j.chb.2020.106635
27 Jarrahi M H. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making[J]. Business Horizons, 2018, 61(4): 577-586. DOI:10.1016/j.bushor.2018.03.007
28 Jussupow E, Spohrer K, Heinzl A, et al. Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence[J]. Information Systems Research, 2021, 32(3): 713-735. DOI:10.1287/isre.2020.0980
29 Kawaguchi K. When will workers follow an algorithm? A field experiment with a retail business[J]. Management Science, 2021, 67(3): 1670-1695. DOI:10.1287/mnsc.2020.3599
30 Keding C, Meissner P. Managerial overreliance on AI-augmented decision-making processes: How the use of AI-based advisory systems shapes choice behavior in R&D investment decisions[J]. Technological Forecasting and Social Change, 2021, 171: 120970. DOI:10.1016/j.techfore.2021.120970
31 Langer M, König C J, Back C, et al. Trust in artificial intelligence: Comparing trust processes between human and automated trustees in light of unfair bias[J]. Journal of Business and Psychology, 2023, 38(3): 493-508. DOI:10.1007/s10869-022-09829-9
32 Langer M, Landers R N. The future of artificial intelligence at work: A review on effects of decision automation and augmentation on workers targeted by algorithms and third-party observers[J]. Computers in Human Behavior, 2021, 123: 106878. DOI:10.1016/j.chb.2021.106878
33 Lebovitz S, Lifshitz-Assaf H, Levina N. To engage or not to engage with AI for critical judgments: How professionals deal with opacity when using AI for medical diagnosis[J]. Organization Science, 2022, 33(1): 126-148. DOI:10.1287/orsc.2021.1549
34 Lehmann C A, Haubitz C B, Fügener A, et al. The risk of algorithm transparency: How algorithm complexity drives the effects on the use of advice[J]. Production and Operations Management, 2022, 31(9): 3419-3434. DOI:10.1111/poms.13770
35 Leyer M, Schneider S. Decision augmentation and automation with artificial intelligence: Threat or opportunity for managers?[J]. Business Horizons, 2021, 64(5): 711-724. DOI:10.1016/j.bushor.2021.02.026
36 Liang H G, Xue Y J. Save face or save life: Physicians’ dilemma in using clinical decision support systems[J]. Information Systems Research, 2022, 33(2): 737-758. DOI:10.1287/isre.2021.1082
37 Logg J M, Minson J A, Moore D A. Algorithm appreciation: People prefer algorithmic to human judgment[J]. Organizational Behavior and Human Decision Processes, 2019, 151: 90-103. DOI:10.1016/j.obhdp.2018.12.005
38 Longoni C, Bonezzi A, Morewedge C K. Resistance to medical artificial intelligence[J]. Journal of Consumer Research, 2019, 46(4): 629-650. DOI:10.1093/jcr/ucz013
39 Luo X M, Tong S L, Fang Z, et al. Frontiers: Machines vs. Humans: The impact of artificial intelligence chatbot disclosure on customer purchases[J]. Marketing Science, 2019, 38(6): 913-1084.
40 Mahmud H, Islam A K M N, Ahmed S I, et al. What influences algorithmic decision-making? A systematic literature review on algorithm aversion[J]. Technological Forecasting and Social Change, 2022, 175: 121390. DOI:10.1016/j.techfore.2021.121390
41 Mahmud H, Islam A K M N, Mitra R K. What drives managers towards algorithm aversion and how to overcome it? Mitigating the impact of innovation resistance through technology readiness[J]. Technological Forecasting and Social Change, 2023, 193: 122641. DOI:10.1016/j.techfore.2023.122641
42 Mayer A S, Strich F, Fiedler M. Unintended consequences of introducing AI systems for decision making[J]. Mis Quarterly Executive, 2020, 19(4): 6.
43 Metcalf L, Askay D A, Rosenberg L B. Keeping humans in the loop: Pooling knowledge through artificial swarm intelligence to improve business decision making[J]. California Management Review, 2019, 61(4): 84-109. DOI:10.1177/0008125619862256
44 Park E H, Werder K, Cao L, et al. Why do family members reject AI in health care? Competing effects of emotions[J]. Journal of Management Information Systems, 2022, 39(3): 765-792. DOI:10.1080/07421222.2022.2096550
45 Pietronudo M C, Croidieu G, Schiavone F. A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management[J]. Technological Forecasting and Social Change, 2022, 182: 121828. DOI:10.1016/j.techfore.2022.121828
46 Raisch S, Krakowski S. Artificial intelligence and management: The automation-augmentation paradox[J]. Academy of Management Review, 2021, 46(1): 192-210. DOI:10.5465/amr.2018.0072
47 Saragih M, Morrison B W. The effect of past algorithmic performance and decision significance on algorithmic advice acceptance[J]. International Journal of Human-Computer Interaction, 2022, 38(13): 1228-1237. DOI:10.1080/10447318.2021.1990518
48 Sharma S, Islam N, Singh G, et al. Why do retail customers adopt artificial intelligence (AI) based autonomous decision-making systems?[J]. IEEE Transactions on Engineering Management, 2024, 71: 1846-1861. DOI:10.1109/TEM.2022.3157976
49 Shrestha Y R, Ben-Menahem S M, von Krogh G. Organizational decision-making structures in the age of artificial intelligence[J]. California Management Review, 2019, 61(4): 66-83. DOI:10.1177/0008125619862257
50 Strich F, Mayer A S, Fiedler M. What do I do in a world of artificial intelligence? Investigating the impact of substitutive decision-making AI systems on employees' professional role identity[J]. Journal of the Association for Information Systems, 2021, 22(2): 304-324. DOI:10.17705/1jais.00663
51 Sturm T, Pumplun L, Gerlach J P, et al. Machine learning advice in managerial decision-making: The overlooked role of decision makers’ advice utilization[J]. The Journal of Strategic Information Systems, 2023, 32(4): 101790. DOI:10.1016/j.jsis.2023.101790
52 Sun J K, Zhang D J, Hu H Y, et al. Predicting human discretion to adjust algorithmic prescription: A large-scale field experiment in warehouse operations[J]. Management Science, 2022, 68(2): 846-865. DOI:10.1287/mnsc.2021.3990
53 Syam N, Sharma A. Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice[J]. Industrial Marketing Management, 2018, 69: 135-146. DOI:10.1016/j.indmarman.2017.12.019
54 Tang P M, Koopman J, McClean S T, et al. When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory[J]. Academy of Management Journal, 2022, 65(3): 1019-1054. DOI:10.5465/amj.2020.1516
55 Terziyan V, Gryshko S, Golovianko M. Patented intelligence: Cloning human decision models for industry 4.0[J]. Journal of Manufacturing Systems, 2018, 48: 204-217. DOI:10.1016/j.jmsy.2018.04.019
56 Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition[J]. Nature Medicine, 2020, 26(8): 1229-1234. DOI:10.1038/s41591-020-0942-0
57 Vincent V U. Integrating intuition and artificial intelligence in organizational decision-making[J]. Business Horizons, 2021, 64(4): 425-438. DOI:10.1016/j.bushor.2021.02.008
58 Wesche J S, Sonderegger A. Repelled at first sight? Expectations and intentions of job-seekers reading about AI selection in job advertisements[J]. Computers in Human Behavior, 2021, 125: 106931. DOI:10.1016/j.chb.2021.106931
59 Westphal M, Vössing M, Satzger G, et al. Decision control and explanations in human-AI collaboration: Improving user perceptions and compliance[J]. Computers in Human Behavior, 2023, 144: 107714. DOI:10.1016/j.chb.2023.107714
60 Wu C, Zhang R, Kotagiri R, et al. Strategic decisions: Survey, taxonomy, and future directions from artificial intelligence perspective[J]. ACM Computing Surveys, 2023, 55(12): 250.
61 Yam K C, Goh E Y, Fehr R, et al. When your boss is a robot: Workers are more spiteful to robot supervisors that seem more human[J]. Journal of Experimental Social Psychology, 2022, 102: 104360. DOI:10.1016/j.jesp.2022.104360
62 Yan C F, Chen Q, Zhou X Y, et al. When the automated fire backfires: The adoption of algorithm-based hr decision-making could induce consumer’s unfavorable ethicality inferences of the company[J]. Journal of Business Ethics, 2024, 190(4): 841-859. DOI:10.1007/s10551-023-05351-x
63 You S, Yang C L, Li X T. Algorithmic versus human advice: Does presenting prediction performance matter for algorithm appreciation?[J]. Journal of Management Information Systems, 2022, 39(2): 336-365. DOI:10.1080/07421222.2022.2063553
64 Young A D, Monroe A E. Autonomous morals: Inferences of mind predict acceptance of AI behavior in sacrificial moral dilemmas[J]. Journal of Experimental Social Psychology, 2019, 85: 103870. DOI:10.1016/j.jesp.2019.103870
65 Yu S B, Xiong J, Shen H. The rise of chatbots: The effect of using chatbot agents on consumers' responses to request rejection[J]. Journal of Consumer Psychology, 2024, 34(1): 35-48. DOI:10.1002/jcpy.1330
66 Zhang Z X, Chen Z S, Xu L Y. Artificial intelligence and moral dilemmas: Perception of ethical decision-making in AI[J]. Journal of Experimental Social Psychology, 2022, 101: 104327. DOI:10.1016/j.jesp.2022.104327
67 Zhou Y Y, Fei Z Y, He Y Q, et al. How human–chatbot interaction impairs charitable giving: The role of moral judgment[J]. Journal of Business Ethics, 2022, 178(3): 849-865. DOI:10.1007/s10551-022-05045-w
引用本文
张亚莉, 李辽辽, 丁振斌. 组织管理中的人工智能决策:述评与展望[J]. 外国经济与管理, 2024, 46(10): 18-38.
导出参考文献,格式为: