智能制造作为新质生产力的重要代表和关键力量,对劳动者健康水平具有重要影响。考察智能制造如何影响劳动者健康,对我国实现“健康中国”战略目标具有重要的理论价值和现实意义。文章基于2000—2015年中国海关、中国专利以及中国健康与营养调查(CHNS)数据库,考察了智能制造对劳动者健康水平的影响。研究表明:(1)智能制造与劳动者的身体健康水平之间存在显著的正相关关系,即智能制造提高了劳动者的健康水平;智能制造还能够改善劳动者心理健康水平,对劳动者患情绪类、免疫系统、呼吸系统等疾病均具有显著的抑制作用。(2)智能制造主要通过减少工作“时力”、增强工作价值感、缓解心理压力和改善工作环境等途径提升劳动者的健康水平。(3)智能制造的健康促进效应在低技能水平劳动力和临时工群体中更为明显。文章的研究结论为以智能制造为代表的新质生产力赋能“健康中国”战略目标提供了经验证据。
智能制造与劳动者健康——基于个体微观数据的考察
摘要
参考文献
相关附件
5 李建军, 吴周易. 机器人使用的税收红利: 基于新质生产力视角[J]. 管理世界, 2024, (6): 1−15. DOI:10.3969/j.issn.1002-5502.2024.06.001
11 王林辉, 胡晟明, 董直庆. 人工智能技术、任务属性与职业可替代风险——来自微观层面的经验证据[J]. 社会科学文摘, 2022, (8): 91−93.
12 王林辉, 钱圆圆, 宋冬林, 等. 机器人应用的岗位转换效应及就业敏感性群体特征——来自微观个体层面的经验证据[J]. 经济研究, 2023a, (7): 69-85.
13 王林辉, 钱圆圆, 周慧琳, 等. 人工智能技术冲击和中国职业变迁方向[J]. 管理世界, 2023b, (11): 74-93.
14 王永钦, 董雯. 人机之间: 机器人兴起对中国劳动者收入的影响[J]. 世界经济, 2023, (7): 88−115.
21 Acemoglu D, Autor D. Skills, tasks and technologies: Implications for employment and earnings[J]. Handbook of Labor Economics, 2011, 4: 1043−1171.
22 Acemoglu D, Autor D, Hazell J, et al. Artificial intelligence and jobs: Evidence from online vacancies[J]. Journal of Labor Economics, 2022, 40(S1): S293−S340. DOI:10.1086/718327
23 Acemoglu D, Restrepo P. The race between man and machine: Implications of technology for growth, factor shares, and employment[J]. American Economic Review, 2018, 108(6): 1488−1542. DOI:10.1257/aer.20160696
24 Acemoglu D, Restrepo P. Robots and jobs: Evidence from US labor markets[J]. Journal of Political Economy, 2020, 128(6): 2188−2244. DOI:10.1086/705716
25 Acemoglu D, Restrepo P. Demographics and automation[J]. The Review of Economic Studies, 2022a, 89(1): 1-44.
26 Acemoglu D, Restrepo P. Tasks, Automation, and the Rise in U. S. Wage Inequality[J]. Econometrica, 2022b, 90(5): 1973-2016.
27 Aghion P, Jones B F, Jones C I. Artificial intelligence and economic growth[M]. Cambridge, MA: National Bureau of Economic Research, 2017.
28 Autor D H, Levy F, Murnane R J. The skill content of recent technological change: An empirical exploration[J]. The Quarterly Journal of Economics, 2003, 118(4): 1279−1333. DOI:10.1162/003355303322552801
29 Bughin J, Hazan E, Lund S, et al. Skill shift: Automation and the future of the workforce[M]. San Francisco: McKinsey Global Institute, 2018: 3-84.
30 Chen L P, Liu W L. The effect of internet access on body weight: Evidence from China[J]. Journal of Health Economics, 2022, 85: 102670. DOI:10.1016/j.jhealeco.2022.102670
31 Fan H C, Hu Y C, Tang L X. Labor costs and the adoption of robots in China[J]. Journal of Economic Behavior & Organization, 2021, 186: 608−631.
32 Fan H C, Lin F Q, Lin S. The hidden cost of trade liberalization: Input tariff shocks and worker health in China[J]. Journal of International Economics, 2020, 126: 103349. DOI:10.1016/j.jinteco.2020.103349
33 Graetz G, Michaels G. Robots at work[J]. The Review of Economics and Statistics, 2018, 100(5): 753−768. DOI:10.1162/rest_a_00754
34 Han W Z, Zhang Y M. Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development[J]. Innovation and Green Development, 2024, 3(3): 100158. DOI:10.1016/j.igd.2024.100158
35 Liu Q R, Luo S, Seamans R. Pain or anxiety? The health consequences of rising robot adoption in China[J]. Economics Letters, 2024, 236: 111582. DOI:10.1016/j.econlet.2024.111582
36 Luo W, Tang L X, Yang Y X, et al. Robots as guardians: Industrial automation and workplace safety in China[J]. Journal of Development Economics, 2025, 172: 103381. DOI:10.1016/j.jdeveco.2024.103381
37 Seamans R, Raj M. AI, labor, productivity and the need for firm-level data[R]. National Bureau of Economic Research No. w24239, 2018.
引用本文
盛丹, 吕琳. 智能制造与劳动者健康——基于个体微观数据的考察[J]. 财经研究, 2025, 51(7): 20-33.
导出参考文献,格式为:





1380
5078

