新一轮全球朱格拉周期的判定已得到国际范围的认可,种种迹象表明中国正处于新一轮朱格拉周期的早期。文章基于2006年1月至2018年12月的月度数据,对中国朱格拉周期和设备制造业股价波动周期之间的关联性进行了研究。实证结果显示,中国朱格拉周期和设备制造业股价波动周期的整体相关系数为0.6352,说明两个周期之间存在很强的相关关系;设备制造业股价波动周期领先于朱格拉周期约3-6个月,体现了股票市场是宏观经济晴雨表这一重要功能;结合奇异谱分析方法和自回归方法构建的预测模型能较准确地预测两个周期的未来走势。文章证实了中国经济周期与股票市场波动之间的密切关系,对股票市场投资者优化投资策略和政府部门制定宏观调控政策均有重要的参考价值。
中国朱格拉周期与股价波动关联性研究——基于奇异谱的设备制造业分析
摘要
参考文献
2 丁志国,苏治,杜晓宇. 经济周期与证券市场波动关联性——基于向量SWARCH模型的新证据[J]. 数量经济技术经济研究,2007,(3). DOI:10.3969/j.issn.1000-3894.2007.03.016
7 桂文林,李建兰,刘权盼. 基于奇异谱的中国季度GDP分解和产出缺口估计[J]. 统计与信息论坛,2018,(7). DOI:10.3969/j.issn.1007-3116.2018.07.001
8 郭琨,周炜星,成思危. 中国股市的经济晴雨表作用——基于热最优路径法的动态分析[J]. 管理科学学报,2012,(1). DOI:10.3969/j.issn.1007-9807.2012.01.009
9 韩德宗,吴伟彪. 中国股市是宏观经济的" 晴雨表”吗?[J]. 数量经济技术经济研究,2003,(5). DOI:10.3969/j.issn.1000-3894.2003.05.032
10 黄华继,丁维. 我国股市与经济周期互动关系的谱分析[J]. 产业经济研究,2009,(6). DOI:10.3969/j.issn.1671-9301.2009.06.008
18 晏艳阳,李治,许均平. 中国股市波动与宏观经济因素波动间的协整关系研究[J]. 统计研究,2004,(4). DOI:10.3969/j.issn.1002-4565.2004.04.013
19 杨高宇. 中国股市周期与经济周期的动态关联研究[J]. 工业技术经济,2011,(10). DOI:10.3969/j.issn.1004-910X.2011.10.025
22 张文菲,金祥义. 金融市场发展对企业生存期限影响研究——基于银行与股票市场的数据分析[J]. 财经理论与实践,2019,(2). DOI:10.3969/j.issn.1003-7217.2019.02.003
25 郑小琴. 测度我国的金融周期:基于奇异谱的分析[J]. 金融理论与实践,2018,(8). DOI:10.3969/j.issn.1003-4625.2018.08.011
27 Arellano C,Bai Y,Zhang J. Firm dynamics and financial development[J]. Journal of Monetary Economics,2012,59(6):533–549. DOI:10.1016/j.jmoneco.2012.06.006
28 Campbell J Y,Shiller R J. The dividend ratio model and small sample bias:A Monte Carlo study[J]. Economics Letters,1989,29(4):325–331. DOI:10.1016/0165-1765(89)90211-5
29 Croux C,Reusens P. Do stock prices contain predictive power for the future economic activity? A Granger causality analysis in the frequency domain[J]. Journal of Macroeconomics,2013,35:93–103. DOI:10.1016/j.jmacro.2012.10.001
30 De Carvalho M,Rodrigues P C,Rua A. Tracking the US business cycle with a singular spectrum analysis[J]. Economics Letters,2012,114(1):32–35. DOI:10.1016/j.econlet.2011.09.007
31 De Carvalho M,Rua A. Real-time nowcasting the US output gap:Singular spectrum analysis at work[J]. International Journal of Forecasting,2017,33(1):185–198. DOI:10.1016/j.ijforecast.2015.09.004
32 De Long J B,Summers L H,Abel A B. Equipment investment and economic growth:How strong is the nexus?[J]. Brookings Papers on Economic Activity,1992,(2):157–211. DOI:10.2307/2534583
33 Demirgüç-Kunt A,Levine R. Stock market development and financial intermediaries:Stylized facts[J]. The World Bank Economic Review,1996,10(2):291–321. DOI:10.1093/wber/10.2.291
35 Fama E F. Stock returns,expected returns,and real activity[J]. The Journal of Finance,1990,45(4):1089–1108. DOI:10.1111/j.1540-6261.1990.tb02428.x
36 Fama E F,French K R. A five-factor asset pricing model[J]. Journal of Financial Economics,2015,116(1):1–22. DOI:10.1016/j.jfineco.2014.10.010
37 Filer R K, Hanousek J, Campos N F. Do stock markets promote economic growth?[R]. CERGE-EI Working Paper Series No.151, 2000.
39 Golyandina N, Zhigljavsky A. Singular spectrum analysis for time series[M]. New York: Springer, 2013.
40 Gonzalez R B, Lima J, Marinho L. Business and financial cycles: An estimation of cycles’ length focusing on macroprudential policy[R]. Working Papers 385, 2015.
41 Harris R D F. Stock markets and development:A re-assessment[J]. European Economic Review,1997,41(1):139–146. DOI:10.1016/S0014-2921(96)00021-9
42 Juglar C. Des crises commerciales et leur retour periodique en France, en Angleterre et aux Etats Unis[M]. Paris: Guillaumin, 1862.
43 Kalman D. A singularly valuable decomposition:The SVD of a matrix[J]. The College Mathematics Journal,1996,27(1):2–23. DOI:10.1080/07468342.1996.11973744
44 Kitchin J. Cycles and trends in economic factors[J]. The Review of Economics and Statistics,1923,5(1):10–16. DOI:10.2307/1927031
46 Kumari J,Mahakud J. Relationship between conditional volatility of domestic macroeconomic factors and conditional stock market volatility:Some further evidence from India[J]. Asia-Pacific Financial Markets,2015a,22(1):87–111. DOI:10.1007/s10690-014-9194-7
47 Kumari J,Mahakud J. Does investor sentiment predict the asset volatility? Evidence from emerging stock market India[J]. Journal of Behavioral and Experimental Finance,2015b,8:25–39. DOI:10.1016/j.jbef.2015.10.001
48 Kuznets S S. Secular movements in production and prices: Their nature and their bearing upon cyclical fluctuations[M]. Boston: Houghton Mifflin and Company, 1930: 177-179.
49 Levine R, Zervos S. Stock market development and long-run growth[]. Washington, DC: The World Bank, 1996.
51 Morelli D. The relationship between conditional stock market volatility and conditional macroeconomic volatility:Empirical evidence based on UK data[J]. International Review of Financial Analysis,2002,11(1):101–110. DOI:10.1016/S1057-5219(01)00066-7
52 Pagano M,Pica G. Finance and employment[J]. Economic Policy,2012,27(69):5–55. DOI:10.1111/j.1468-0327.2011.00276.x
53 Patterson K,Hassani H,Heravi S,et al. Multivariate singular spectrum analysis for forecasting revisions to real-time data[J]. Journal of Applied Statistics,2011,38(10):2183–2211. DOI:10.1080/02664763.2010.545371
54 Schwert G W. Why does stock market volatility change over time?[J]. The Journal of Finance,1989,44(5):1115–1153. DOI:10.1111/j.1540-6261.1989.tb02647.x
55 Schwert G W. Stock returns and real activity:A century of evidence[J]. The Journal of Finance,1990,45(4):1237–1257. DOI:10.1111/j.1540-6261.1990.tb02434.x
56 Uebele M,Ritschl A. Stock markets and business cycle comovement in Germany before World War I:Evidence from spectral analysis[J]. Journal of Macroeconomics,2009,31(1):35–57. DOI:10.1016/j.jmacro.2007.08.012
57 Vautard R,Yiou P,Ghil M. Singular-spectrum analysis:A toolkit for short,noisy chaotic signals[J]. Physica D:Nonlinear Phenomena,1992,58(1–4):95–126. DOI:10.1016/0167-2789(92)90103-T
58 Yang C P,Li J F. Investor sentiment,information and asset pricing model[J]. Economic Modelling,2013,35:436–442. DOI:10.1016/j.econmod.2013.07.015
引用本文
尹筑嘉, 胡荟, 唐谭岭. 中国朱格拉周期与股价波动关联性研究——基于奇异谱的设备制造业分析[J]. 上海财经大学学报, 2019, 21(6): 18-34.
导出参考文献,格式为: