良好的宏观审慎监管口头沟通有助于引导市场主体预期,防范系统性金融风险。在中国不断加强宏观审慎监管口头沟通的背景下,文章对2009年4月至2019年12月的宏观审慎监管口头沟通内容进行语料处理,生成计算词典,计算每次口头沟通事件态度的得分,进而构建宏观审慎监管口头沟通指数,并分析口头沟通指数与金融机构关联度指数的关系。研究表明:监管当局会针对系统性金融风险的变化进行口头沟通,银行、证券、保险和信托四部门关联度指数的变化均会影响宏观审慎监管口头沟通;宏观审慎监管口头沟通可以降低系统性金融风险,但发挥作用的时滞为半年,其主要影响银行业被传染指数和保险业传染指数,并且偶尔会出现沟通失灵。进一步地,本文基于监督学习方法,通过训练子样本词典得到具有倾向的短语及其概率分布,利用文本分类器对新的沟通文本进行自动分类,并计算新样本的指数,结果表明不同样本的指数结果较为一致,说明本文的宏观审慎监管口头沟通量化方法具有可复制性和可延展性。
宏观审慎监管口头沟通与系统性风险
摘要
参考文献
1 樊明太,叶思晖. 宏观审慎政策使用及其有效性研究−来自全球62个国家的证据[J]. 国际金融研究,2020,(12):33−42.
8 林建浩,赵文庆. 中国央行沟通指数的测度与谱分析[J]. 统计研究,2015,(1):52−58. DOI:10.3969/j.issn.1002-4565.2015.01.008
10 苗文龙,闫娟娟. 系统性金融风险研究述评−基于宏观审慎监管视角[J]. 金融监管研究,2020,(2):85−101. DOI:10.3969/j.issn.2095-3291.2020.02.006
11 万志宏,李凤. 中央银行金融稳定性沟通的国际比较与借鉴[J]. 金融理论与实践,2015,(7):87−93. DOI:10.3969/j.issn.1003-4625.2015.07.018
13 杨子晖,陈雨恬,陈里璇. 极端金融风险的有效测度与非线性传染[J]. 经济研究,2019,(5):63−80. DOI:10.3969/j.issn.1672-5719.2019.05.057
16 Aikman D,Haldane A G,Nelson B D. Curbing the credit cycle[J]. The Economic Journal,2015,125(585): 1072−1109. DOI:10.1111/ecoj.12113
18 Born B,Ehrmann M,Fratzscher M. Communicating about macro-prudential supervision-A new challenge for central banks[J]. International Finance,2012,15(2): 179−203. DOI:10.1111/j.1468-2362.2012.01301.x
19 Born B,Ehrmann M,Fratzscher M. Central bank communication on financial stability[J]. The Economic Journal,2014,124(577): 701−734. DOI:10.1111/ecoj.12039
20 Claessens S,Ghosh S R,Mihet R. Macro-prudential policies to mitigate financial system vulnerabilities[J]. Journal of International Money and Finance,2013,39: 153−185. DOI:10.1016/j.jimonfin.2013.06.023
21 Fratzscher M. Oral interventions versus actual interventions in fx markets:An event-study approach[J]. The Economic Journal,2008,118(530): 1079−1106. DOI:10.1111/j.1468-0297.2008.02161.x
23 Härdle W K,Wang W N,Yu L N. TENET:Tail-event driven network risk[J]. Journal of Econometrics,2016,192(2): 499−513. DOI:10.1016/j.jeconom.2016.02.013
24 Hautsch N,Schaumburg J,Schienle M. Financial network systemic risk contributions[J]. Review of Finance,2015,19(2): 685−738. DOI:10.1093/rof/rfu010
25 IMF. Macroprudential policy: An organizing framework[R]. Background Paper, 2011.
26 IMF. The interaction of monetary and macroprudential policies[R]. Background Paper, 2015.
27 Jayaram K, Gadanecz B. Macroprudential policy frameworks, instruments and indicators: A review[A]. Bank for International Settlements. Combining micro and macro data for financial stability analysis[M]. Basel: Bank for International Settlements, 2016.
28 Lim C H, Costa A, Columba F, et al. Macroprudential policy: What instruments and how to use them? Lessons from country experiences[R]. IMF Working Paper No. 11/238, 2011.
29 Picault M,Renault T. Words are not all created equal:A new measure of ECB communication[J]. Journal of International Money and Finance,2017,79: 136−156. DOI:10.1016/j.jimonfin.2017.09.005
30 Rosa C,Verga G. On the consistency and effectiveness of central bank communication:Evidence from the ECB[J]. European Journal of Political Economy,2007,23(1): 146−175. DOI:10.1016/j.ejpoleco.2006.09.016
31 Sarlin P. Macroprudential oversight,risk communication and visualization[J]. Journal of Financial Stability,2016,27: 160−179. DOI:10.1016/j.jfs.2015.12.005
32 Yu K M,Lu Z D,Stander J. Quantile regression:Applications and current research areas[J]. Journal of the Royal Statistical Society:Series D(The Statistician),2003,52(3): 331−350. DOI:10.1111/1467-9884.00363
引用本文
赵静, 许海萍. 宏观审慎监管口头沟通与系统性风险[J]. 财经研究, 2021, 47(7): 108-123.
导出参考文献,格式为: