算法想象是个体对算法系统的感知、情绪,与其相关的民间理论以及随之产生的算法行为。算法的这种个体主观认知对个体与数字平台的影响不亚于客观算法模型,目前却鲜有研究对其进行探索。为了更好地推动算法认知与行为研究进展,本文对算法想象相关研究进行了系统梳理。首先,本文从想象可供性视角出发,进一步明晰了算法想象概念的内涵与外延。其次,本文从中介、情感和物质三个维度,将现有相关研究分为算法感知、算法情绪、算法民间理论和算法行为四个方向,并对这四个方向的研究进行了分层归纳和评述。再次,本文提出了感知、情绪和民间理论在主体内部相互影响,并最终综合影响用户算法行为的路径,构建了算法想象整体链路。最后,本文从理论上为个体的能动性如何影响数字社交媒体平台景观提供了可能的解释路径,从实践上为公众技术接纳和算法教育提供了参考,并指出了后续研究方向。
人机互动中的算法想象:研究评述与展望
摘要
参考文献
4 Alvarado O, Heuer H, Vanden Abeele V, et al. Middle-aged video consumers’ beliefs about algorithmic recommendations on YouTube[J]. Proceedings of the ACM on Human-Computer Interaction,2020, 4(CSCW2): 121.
5 Andalibi N, Buss J. The human in emotion recognition on social media: Attitudes, outcomes, risks[A]. Proceedings of the CHI conference on human factors in computing systems[C]. Honolulu, USA: ACM, 2020.
6 Araujo T, Helberger N, Kruikemeier S, et al. In AI we trust? Perceptions about automated decision-making by artificial intelligence[J]. AI & SOCIETY,2020, 35(3): 611-623.
7 Batliner A. Hearing and speech[J]. A Special Issue of the Quarterly Journal of Experimental Psychology-Section A-Human Experimental Psychology,1993, 12(1): 55-56.
8 Bishop S. Managing visibility on YouTube through algorithmic gossip[J]. New Media & Society,2019, 21(11-12): 2589-2606.
9 Bucher T. The algorithmic imaginary: Exploring the ordinary affects of Facebook algorithms[J]. Information, Communication & Society,2017, 20(1): 30-44.
10 Bucher T, Helmond A. The Affordances of Social Media Platforms[A]. Burgess J, Marwick A, Poell T. The sage handbook of social media[C]. London: SAGE Publications, 2017.
11 Burton J W, Stein M K, Jensen T B. A systematic review of algorithm aversion in augmented decision making[J]. Journal of Behavioral Decision Making,2020, 33(2): 220-239. DOI:10.1002/bdm.2155
12 Cotter K. Playing the visibility game: How digital influencers and algorithms negotiate influence on Instagram[J]. New Media & Society,2019, 21(4): 895-913.
13 DeVito M A. Adaptive folk theorization as a path to algorithmic literacy on changing platforms[J]. Proceedings of the ACM on Human-Computer Interaction,2021, 5(CSCW2): 339.
14 DeVito M A, Birnholtz J, Hancock J T, et al. How people form folk theories of social media feeds and what it means for how we study self-presentation[A]. Proceedings of the 2018 CHI conference on human factors in computing systems[C]. Montreal, Canada: ACM, 2018.
15 DeVito M A, Gergle D, Birnholtz J. “Algorithms ruin everything”: #RIPTwitter, folk theories, and resistance to algorithmic change in social media[A]. Proceedings of the 2017 CHI conference on human factors in computing systems[C]. Denver, Colorado, USA: Association for Computing Machinery, 2017.
16 Dogruel L. Folk theories of algorithmic operations during Internet use: A mixed methods study[J]. The Information Society,2021, 37(5): 287-298. DOI:10.1080/01972243.2021.1949768
17 Dogruel L, Facciorusso D, Stark B. ‘I’m still the master of the machine. ‘Internet users’ awareness of algorithmic decision-making and their perception of its effect on their autonomy[J]. Information, Communication & Society,2022a, 25(9): 1311-1332.
18 Dogruel L, Masur P, Joeckel S. Development and validation of an algorithm literacy scale for internet users[J]. Communication Methods and Measures,2022b, 16(2): 115-133.
19 Duffy B E, Pruchniewska U, Scolere L. Platform-specific self-branding: Imagined affordances of the social media ecology[A]. Proceedings of the 8th international conference on social media & society[C]. Toronto, Canada: ACM, 2017.
20 Eiband M, Völkel S T, Buschek D, et al. When people and algorithms meet: User-reported problems in intelligent everyday applications[A]. Proceedings of the 24th international conference on intelligent user interfaces[C]. Marina del Rey, CA, USA: ACM, 2019.
21 Eslami M, Karahalios K, Sandvig C, et al. First I “like” it, then I hide it: Folk theories of social feeds[A]. Proceedings of the 2016 CHI conference on human factors in computing systems[C]. San Jose, CA: ACM, 2016.
22 Ferrario A, Loi M, Viganò E. In AI we trust incrementally: A multi-layer model of trust to analyze human-artificial intelligence interactions[J]. Philosophy & Technology,2020, 33(3): 523-539.
23 French M, Hancock J T. What’s the folk theory? Reasoning about cyber-social systems[A]. Proceedings of the 67th annual conference of the international communication association[C]. San Diego, 2017.
24 Gaver W W. Situating action II: Affordances for interaction: The social is material for design[J]. Ecological Psychology,1996, 8(2): 111-129. DOI:10.1207/s15326969eco0802_2
25 Gelman S A, Legare C H. Concepts and folk theories[J]. Annual Review of Anthropology,2011, 40: 379-398. DOI:10.1146/annurev-anthro-081309-145822
26 Gibson J J. The ecological approach to visual perception[M]. Psychology Press, 1986.
27 Glikson E, Woolley A W. Human trust in artificial intelligence: Review of empirical research[J]. Academy of Management Annals,2020, 14(2): 627-660. DOI:10.5465/annals.2018.0057
28 Gran A, Booth P, Bucher T. To be or not to be algorithm aware: A question of a new digital divide?[J]. Information, Communication & Society,2021, 24(12): 1779-1796.
29 Gruber J, Hargittai E, Karaoglu G, et al. Algorithm awareness as an important internet skill: The case of voice assistants[J]. International Journal of Communication,2021, 15: 1770-1788.
30 Hargittai E, Gruber J, Djukaric T, et al. Black box measures? How to study people’s algorithm skills[J]. Information, Communication & Society,2020, 23(5): 764-775.
31 Hilbert M, Ahmed S, Cho J, et al. Communicating with algorithms: A transfer entropy analysis of emotions-based escapes from online echo chambers[J]. Communication Methods and Measures,2018, 12(4): 260-275. DOI:10.1080/19312458.2018.1479843
32 Hollis V, Pekurovsky A, Wu E, et al. On being told how we feel: How algorithmic sensor feedback influences emotion perception[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,2018, 2(3): 114.
33 Hutchby I. Technologies, texts and affordances[J]. Sociology,2001, 35(2): 441-456. DOI:10.1177/S0038038501000219
34 Knuth D E. The art of computer programming: Sorting and searching (Vol. 3)[M]. 2nd ed. Redwood City: Addison-Wesley, 1998.
35 Lee M K. Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management[J]. Big Data & Society, 2018, 5(1), doi: 10.1177/2053951718756684.
36 Leonardi P M, Barley S R. Materiality and change: Challenges to building better theory about technology and organizing[J]. Information and Organization,2008, 18(3): 159-176. DOI:10.1016/j.infoandorg.2008.03.001
37 Liao T, Tyson O. “Crystal is creepy, but cool”: Mapping folk theories and responses to automated personality recognition algorithms[J]. Social Media + Society, 2021, 7(2), doi: 10.1177/20563051211010170.
38 Logg J A, Minson J A, Moore D A. Algorithm appreciation: People prefer algorithmic to human judgment[J]. Organizational Behavior and Human Decision Processes,2019, 151: 90-103. DOI:10.1016/j.obhdp.2018.12.005
39 Magalhães J C. Algorithmic resistance as political disengagement[J]. Media International Australia,2022, 183(1): 77-89. DOI:10.1177/1329878X221086045
40 Nagy P, Neff G. Imagined affordance: Reconstructing a keyword for communication theory[J]. Social Media + Society, 2015, 1(2), doi: 10.1177/2056305115603385.
41 Norman D A. Affordance, conventions, and design[J]. Interactions,1999, 6(3): 38-43. DOI:10.1145/301153.301168
42 Parisi L, Comunello F. Dating in the time of “relational filter bubbles”: Exploring imaginaries, perceptions and tactics of Italian dating app users[J]. The Communication Review,2019, 23(1): 66-89.
43 Sharabi L L. Exploring how beliefs about algorithms shape (offline) success in online dating: A two-wave longitudinal investigation[J]. Communication Research,2021, 48(7): 931-952. DOI:10.1177/0093650219896936
44 Shin D. The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI[J]. International Journal of Human-Computer Studies,2021, 146: 102551. DOI:10.1016/j.ijhcs.2020.102551
45 Shin D. How do people judge the credibility of algorithmic sources?[J]. AI & SOCIETY,2022, 37(1): 81-96.
46 Shin D, Rasul A, Fotiadis A. Why am I seeing this? Deconstructing algorithm literacy through the lens of users[J]. Internet Research,2022, 32(4): 1214-1234. DOI:10.1108/INTR-02-2021-0087
47 Siles I, Segura-Castillo A, Solís R, et al. Folk theories of algorithmic recommendations on Spotify: Enacting data assemblages in the global South[J]. Big Data & Society, 2020, 7(1), doi: 10.1177/2053951720923377.
48 Van Dijck J, Poell T, de Waal M. The platform society[M]. Oxford University Press, 2018.
49 Velkova J, Kaun A. Algorithmic resistance: Media practices and the politics of repair[J]. Information, Communication & Society,2021, 24(4): 523-540.
50 Xie X Z, Du Y, Bai Q Y. Why do people resist algorithms? From the perspective of short video usage motivations[J]. Frontiers in Psychology,2022, 13: 941640. DOI:10.3389/fpsyg.2022.941640
51 Zarouali B, Boerman S C, de Vreese C H. Is this recommended by an algorithm? The development and validation of the algorithmic media content awareness scale (AMCA-scale)[J]. Telematics and Informatics,2021, 62: 101607. DOI:10.1016/j.tele.2021.101607
引用本文
黄小莉, 周懿瑾. 人机互动中的算法想象:研究评述与展望[J]. 外国经济与管理, 2023, 45(7): 91-105.
导出参考文献,格式为:
下一篇:游戏化能够激发员工的主动行为吗?