智能制造是基于信息技术与先进制造技术深度融合的新型生产模式。伴随着工业4.0的兴起与发展,越来越多的制造业企业开始实施智能化转型,厘清智能制造与创新绩效的关系有利于帮助企业顺利地推进智能化转型,从而实现企业绩效的提升。本文基于信息处理能力的视角,研究智能制造是否能够以及何以能够促进企业的创新绩效。研究发现:研发投入的增加能够丰富企业的知识库,提高企业的吸收能力,并因此更好地执行企业组织单元解决问题时的“搜索—选择”循环,即提升企业的信息处理能力,从而强化智能制造与创新绩效的关系。本研究还发现,组织结构复杂性的提高会降低企业应对环境变化的反应能力和企业内部的协调能力,并因此加大企业组织单元之间协调配合的难度,即削弱企业的信息处理能力,从而弱化智能制造与创新绩效的关系。本研究可以帮助企业顺利地推进智能化转型,找到提升企业绩效的途径。
智能制造能促进企业创新绩效吗?
摘要
参考文献
5 苏敬勤, 刘静. 组织变革、动态能力与创新绩效——基于多案例的研究[J]. 管理案例研究与评论,2012, 5(5): 323-332. DOI:10.3969/j.issn.1674-1692.2012.05.001
6 孙新波, 张媛, 王永霞, 等. 数字价值创造: 研究框架与展望[J]. 外国经济与管理,2021. DOI:10.16538/j.cnki.fem.20210322.401
10 Anderson P. Perspective: Complexity theory and organization science[J]. Organization Science,1999, 10(3): 216-232. DOI:10.1287/orsc.10.3.216
11 Bensaou M, Venkatraman N. Configurations of interorganizational relationships: A comparison between U. S. and Japanese automakers[J]. Management Science,1995, 41(9): 1471-1492. DOI:10.1287/mnsc.41.9.1471
13 Büchi G, Cugno M, Castagnoli R. Smart factory performance and Industry 4.0[J]. Technological Forecasting and Social Change,2020, 150: 119790. DOI:10.1016/j.techfore.2019.119790
14 Cámara S B, Fuentes J M, Marín J M M. Cloud computing, Web 2.0, and operational performance[J]. The International Journal of Logistics Management,2015, 26(3): 426-458. DOI:10.1108/IJLM-07-2013-0085
15 Cao G M, Duan Y Q, Cadden T. The link between information processing capability and competitive advantage mediated through decision-making effectiveness[J]. International Journal of Information Management,2019, 44: 121-131. DOI:10.1016/j.ijinfomgt.2018.10.003
16 Chauvin K W, Hirschey M. Advertising, R& D expenditures and the market value of the firm[J]. Financial Management,1993, 22(4): 128-140. DOI:10.2307/3665583
17 Chen Y F, Vanhaverbeke W, Du J S. The interaction between internal R& D and different types of external knowledge sourcing: An empirical study of Chinese innovative firms[J]. R& D Management,2016, 46(S3): 1006-1023.
18 Cohen W M, Levinthal D A. Absorptive capacity: A new perspective on learning and innovation[J]. Administrative Science Quarterly,1990, 35(1): 128-152. DOI:10.2307/2393553
19 Culot G, Nassimbeni G, Orzes G, et al. Behind the definition of industry 4.0: Analysis and open questions[J]. International Journal of Production Economics,2020, 226: 107617. DOI:10.1016/j.ijpe.2020.107617
20 Daft R L, Lengel R H. Organizational information requirements, media richness and structural design[J]. Management Science,1986, 32(5): 554-571. DOI:10.1287/mnsc.32.5.554
21 Dalenogare L S, Benitez G B, Ayala N F, et al. The expected contribution of Industry 4.0 technologies for industrial performance[J]. International Journal of Production Economics,2018, 204: 383-394. DOI:10.1016/j.ijpe.2018.08.019
22 Egelhoff W G. Information-processing theory and the multinational enterprise[J]. Journal of International Business Studies,1991, 22(3): 341-368. DOI:10.1057/palgrave.jibs.8490306
23 Feng Q, Shanthikumar J G. How research in production and operations management may evolve in the era of big data[J]. Production and Operations Management,2018, 27(9): 1670-1684. DOI:10.1111/poms.12836
24 Frank A G, Dalenogare L S, Ayala N F. Industry 4.0 technologies: Implementation patterns in manufacturing companies[J]. International Journal of Production Economics,2019, 210: 15-26. DOI:10.1016/j.ijpe.2019.01.004
25 Galbraith J R. Designing complex organizations[M]. Boston: Addison-Wesley, 1973.
26 Galbraith J R. Organization design[M]. Reading: Addison-Wesley, 1977.
27 Gómez J, Salazar I, Vargas P. Firm boundaries, information processing capacity, and performance in manufacturing firms[J]. Journal of Management Information Systems,2016, 33(3): 809-842. DOI:10.1080/07421222.2016.1243954
28 Gómez J, Salazar I, Vargas P. Does information technology improve open innovation performance? An examination of manufacturers in Spain[J]. Information Systems Research,2017, 28(3): 661-675. DOI:10.1287/isre.2017.0705
29 Grimpe C, Sofka W. Search patterns and absorptive capacity: Low- and high-technology sectors in European countries[J]. Research Policy,2009, 38(3): 495-506. DOI:10.1016/j.respol.2008.10.006
31 Haußmann C, Dwivedi Y K, Venkitachalam K, et al. A summary and review of Galbraith’s organizational information processing theory[A]. Dwivedi Y K, Wade M R, Schneberger S L. Information systems theory: Explaining and predicting our digital society[M]. New York: Springer, 2012: 71-93.
32 Hoole R. Drive complexity out of your supply chain[J]. Harvard Business School Newsletter,2006: 3-5.
33 Joshi A D, Gupta S M. Evaluation of design alternatives of End-of-Life products using internet of things[J]. International Journal of Production Economics,2019, 208: 281-293. DOI:10.1016/j.ijpe.2018.12.010
34 Joshi K D, Chi L, Datta A, Han S. Changing the competitive landscape: Continuous innovation through IT-enabled knowledge capabilities[J]. Information Systems Research,2010, 21(3): 472-495. DOI:10.1287/isre.1100.0298
35 Karhade P P, Dong J Q. Information technology investment and commercialized innovation performance: Dynamic adjustment costs and curvilinear impacts[J]. MIS Quarterly, 2021. In Press.
36 Kleis L, Chwelos P, Ramirez R V, Cockburn I. Information technology and intangible output: The impact of IT investment on innovation productivity[J]. Information Systems Research,2012, 23(1): 42-59. DOI:10.1287/isre.1100.0338
37 Kusiak A. Smart manufacturing[J]. International Journal of Production Research,2018, 56(1-2): 508-517. DOI:10.1080/00207543.2017.1351644
38 Lam L W. Impact of competitiveness on salespeople’s commitment and performance[J]. Journal of Business Research,2012, 65(9): 1328-1334. DOI:10.1016/j.jbusres.2011.10.026
40 Li Y, Dai J, Cui L. The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model[J]. International Journal of Production Economics,2020, 229: 107777. DOI:10.1016/j.ijpe.2020.107777
41 Niebel T, Rasel F, Viete S. BIG data – BIG gains? Understanding the link between big data analytics and innovation[J]. Economics of Innovation and New Technology,2018, 28(3): 296-316.
42 Oettmeier K, Hofmann E. Additive manufacturing technology adoption: An empirical analysis of general and supply chain-related determinants[J]. Journal of Business Economics,2016, 87(1): 97-124. DOI:10.1007/s11573-016-0806-8
43 Olsen T L, Tomlin B. Industry 4.0: Opportunities and challenges for operations management[J]. Manufacturing & Service Operations Management,2020, 22(1): 113-122.
44 Osterrieder P, Budde L, Friedli T. The smart factory as a key construct of industry 4.0: A systematic literature review[J]. International Journal of Production Economics,2020, 221: 107476. DOI:10.1016/j.ijpe.2019.08.011
45 Pertusa-Ortega E, Zaragoza-Saze P, Claver-Cortes E. Can formalization, complexity, and centralization influence knowledge performance[J]. Journal of Business Research,2010, 63(3): 310-320. DOI:10.1016/j.jbusres.2009.03.015
46 Podsakoff P M, MacKenzie S B, Lee J, Podsakoff N P. Common methods biases in behavioral research: A critical review of the literature and recommended remedies[J]. Journal of Applied Psychology,2003, 88: 879-903. DOI:10.1037/0021-9010.88.5.879
48 Premkumar G, Ramamurthy K, Saunders C S. Information processing view of organizations: An exploratory examination of fit in the context of interorganizational relationships[J]. Journal of Management Information Systems,2005, 22(1): 257-294. DOI:10.1080/07421222.2003.11045841
49 Raj A, Dwivedi G, Sharma A, Jabbour A. B. L. d. S, Rajak S Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective[J]. International Journal of Production Economics,2020, 224: 107546. DOI:10.1016/j.ijpe.2019.107546
50 Ravichandran T, Han S, Mithas S. Mitigating diminishing returns to R& D: The role of information technology in innovation[J]. Information Systems Research,2017, 28(4): 812-827. DOI:10.1287/isre.2017.0717
51 Robbins S P. Organization theory: Structure, design, and applications (3rd ed.)[M]. New Jersey: Prentice Hall, 1990.
52 Rybakov L A. Environment and complexity of organizations[J]. Emergence,2001, 3(4): 83-94. DOI:10.1207/S15327000EM0304_6
53 Simon H A. The architecture of complexity (3rd ed)[M]. Cambridge, MA: MIT Press, 1996.
54 Snihur Y, Tarzijan J. Managing complexity in a multi-business-model organization[J]. Long Range Planning,2018, 51(1): 50-63. DOI:10.1016/j.lrp.2017.06.010
55 Song M, Di Benedetto C A. Supplier’s involvement and success of radical new product development in new ventures[J]. Journal of Operations Management,2008, 26(1): 1-22. DOI:10.1016/j.jom.2007.06.001
56 Song M, Dyer B, Thieme R J. Conflict management and innovation performance: An integrated contingency perspective[J]. Journal of the Academy of Marketing Science,2006, 34(3): 341-356. DOI:10.1177/0092070306286705
57 Song M, Van Der Bij H, Weggeman M. Determinants of the level of knowledge application: A knowledge-based and information-processing perspective[J]. Journal of Production Innovation Management,2005, 22: 430-444. DOI:10.1111/j.1540-5885.2005.00139.x
58 Srinivasan R, Swink M. Leveraging supply chain integration through planning comprehensiveness: An organizational information processing theory perspective[J]. Decision Sciences,2015, 46(5): 823-861. DOI:10.1111/deci.12166
59 Tao F, Qi Q, Liu A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems,2018, 48: 157-169.
60 Tushman M L, Nadler D A. Information processing as an integrating concept in organization design[J]. Academy of Management Review,1978, 3(3): 613-624.
61 Vickery S K, Koufteros X, Dröge C, Calantone R. Product modularity, process modularity, and new product introduction performance: Does complexity matter?[J]. Production and Operations Management,2016, 25: 751-770. DOI:10.1111/poms.12495
62 Wang E C. R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach[J]. Journal of Policy Modeling,2007, 29(2): 345-360. DOI:10.1016/j.jpolmod.2006.12.005
63 Wang E T G. Effect of the fit between information processing requirements and capacity on organizational performance[J]. International Journal of Information Management,2003, 23(3): 239-247. DOI:10.1016/S0268-4012(02)00106-8
64 West J. Institutions, information processing, and organization structure in research and development: Evidence from the semiconductor industry[J]. Research Policy,2000, 29(3): 349-373. DOI:10.1016/S0048-7333(99)00035-9
67 Xu L D, Xu E L, Li L. Industry 4.0: State of the art and future trends[J]. International Journal of Production Research,2018, 56(8): 2941-2962. DOI:10.1080/00207543.2018.1444806
68 Yang J, Ying L, Gao M. The influence of intelligent manufacturing on financial performance and innovation performance: The case of China[J]. Enterprise Information Systems,2020, 14(6): 812-832. DOI:10.1080/17517575.2020.1746407
引用本文
陈金亮, 赵雅欣, 林嵩. 智能制造能促进企业创新绩效吗?[J]. 外国经济与管理, 2021, 43(9): 83-101.
导出参考文献,格式为:
下一篇:生生不息:破解绩效导向的悖论