在新一轮科技革命深入推进的大背景下,数字化转型是企业实现可持续发展的有效路径。数字技术的应用对企业生产和创新模式将产生巨大影响。文章以中国工业和信息化部在全国制造业企业中推行的“两化”融合试点工作为背景,通过匹配国家知识产权局专利数据与上市公司数据,利用多期双重差分模型识别数字化转型的异地合作创新效应。实证结果显示:相较于未进行“两化”融合的制造业企业,试点企业的异地联合申请专利数量明显增加。异质性检验显示:数字化转型对企业异地合作创新的影响效应在边缘城市、市场竞争程度较低、研发背景高管占比较高以及国有企业组别中更加明显;机制分析显示:数字化转型主要通过压缩时空距离和流程再造两个方面影响企业异地合作创新;扩展研究显示:数字化转型带来的合作创新效应对不同类型的专利申请活动都存在正面影响;同时,数字化转型能有效促进异地不同知识背景的主体相互合作,有效发挥了知识匹配效应。基于实证结果,本文提出积极把握企业数字化转型机遇,加强数字化场景建设,降低企业合作成本促进企业合作创新等政策建议。
通向可持续发展之路:数字化转型与企业异地合作创新*
摘要
参考文献
1 陈剑, 黄朔, 刘运辉. 从赋能到使能−数字化环境下的企业运营管理[J]. 管理世界,2020,(2):117−128. DOI:10.3969/j.issn.1002-5502.2020.02.011
3 陈晓红, 李杨扬, 宋丽洁, 等. 数字经济理论体系与研究展望[J]. 管理世界,2022,(2):208−224. DOI:10.3969/j.issn.1002-5502.2022.02.014
5 聂兴凯, 王稳华, 裴璇. 企业数字化转型会影响会计信息可比性吗[J]. 会计研究,2022,(5):17−39. DOI:10.3969/j.issn.1003-2886.2022.05.002
8 王林辉, 姜昊, 董直庆. 工业智能化会重塑企业地理格局吗[J]. 中国工业经济,2022,(2):137−155. DOI:10.3969/j.issn.1006-480X.2022.02.009
9 王如玉, 梁琦, 李广乾. 虚拟集聚: 新一代信息技术与实体经济深度融合的空间组织新形态[J]. 管理世界,2018,(2):13−21. DOI:10.3969/j.issn.1002-5502.2018.02.002
10 吴非, 胡慧芷, 林慧妍, 等. 企业数字化转型与资本市场表现−来自股票流动性的经验证据[J]. 管理世界,2021,(7):130−144. DOI:10.3969/j.issn.1002-5502.2021.07.010
12 赵宸宇, 王文春, 李雪松. 数字化转型如何影响企业全要素生产率[J]. 财贸经济,2021,(7):114−129. DOI:10.3969/j.issn.1002-8102.2021.07.008
15 Andersson D, Berger T, Prawitz E. Making a market: Infrastructure, integration, and the rise of innovation[J]. The Review of Economics and Statistics,2021: 1−44. DOI:10.1162/rest_a_01067
16 Beneish M D, Press E, Vargus M E. Insider trading and earnings management in distressed firms[J]. Contemporary Accounting Research,2012,29(1): 191−220. DOI:10.1111/j.1911-3846.2011.01084.x
17 Boschma R. Proximity and innovation: A critical assessment[J]. Regional Studies,2005,39(1): 61−74. DOI:10.1080/0034340052000320887
18 Bottazzi L, Peri G. Innovation and spillovers in regions: Evidence from European patent data[J]. European Economic Review,2003,47(4): 687−710. DOI:10.1016/S0014-2921(02)00307-0
19 Cassi L, Plunket A. Research collaboration in Co-inventor networks: Combining closure, bridging and proximities[J]. Regional Studies,2015,49(6): 936−954. DOI:10.1080/00343404.2013.816412
20 Chen H J, Xie F J. How technological proximity affect collaborative innovation? An empirical study of China's Beijing-Tianjin-Hebei region[J]. Journal of Management Analytics,2018,5(4): 287−308. DOI:10.1080/23270012.2018.1478329
22 Feldman M P. The geography of innovation[M]. Dordrecht: Springer, 1994.
23 Ferretti M, Guerini M, Panetti E, et al. The partner next door? The effect of micro-geographical proximity on intra-cluster inter-organizational relationships[J]. Technovation,2022,111: 102390. DOI:10.1016/j.technovation.2021.102390
25 Giuliani E, Bell M. The micro-determinants of meso-level learning and innovation: Evidence from a Chilean wine cluster[J]. Research Policy,2005,34(1): 47−68. DOI:10.1016/j.respol.2004.10.008
26 Goldfarb A, Tucker C. Digital economics[J]. Journal of Economic Literature,2019,57(1): 3−43. DOI:10.1257/jel.20171452
28 Hanley D, Li J C, Wu M Q. High-speed railways and collaborative innovation[J]. Regional Science and Urban Economics,2022,93: 103717. DOI:10.1016/j.regsciurbeco.2021.103717
30 Heringa P W, Hessels L K, van der Zouwen M. The influence of proximity dimensions on international research collaboration: An analysis of European water projects[J]. Industry and Innovation,2016,23(8): 753−772. DOI:10.1080/13662716.2016.1215240
31 Hui K W, Klasa S, Yeung P E. Corporate suppliers and customers and accounting conservatism[J]. Journal of Accounting and Economics,2012,53(1-2): 115−135. DOI:10.1016/j.jacceco.2011.11.007
32 Mattes J. Dimensions of proximity and knowledge bases: Innovation between spatial and non-spatial factors[J]. Regional Studies,2012,46(8): 1085−1099. DOI:10.1080/00343404.2011.552493
33 Newell S, Marabelli M. Strategic opportunities (and challenges) of algorithmic decision-making: A call for action on the long-term societal effects of ‘datification’[J]. The Journal of Strategic Information Systems,2015,24(1): 3−14. DOI:10.1016/j.jsis.2015.02.001
35 Rios-Avila F, Canavire-Bacarreza G. Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach[J]. The Stata Journal:Promoting communications on statistics and Stata,2018,18(1): 206−222. DOI:10.1177/1536867X1801800113
36 Steinmo M, Rasmussen E. How firms collaborate with public research organizations: The evolution of proximity dimensions in successful innovation projects[J]. Journal of Business Research,2016,69(3): 1250−1259. DOI:10.1016/j.jbusres.2015.09.006
37 Sun L Y, Abraham S. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects[J]. Journal of Econometrics,2021,225(2): 175−199. DOI:10.1016/j.jeconom.2020.09.006
38 Wang Y M, Cao G H, Yan Y L, et al. Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China[J]. Transport Policy,2022,116: 119−131. DOI:10.1016/j.tranpol.2021.11.024
39 Wooldridge J M. Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables[J]. Journal of Econometrics,2014,182(1): 226−234. DOI:10.1016/j.jeconom.2014.04.020
40 Yao L, Li J. Intercity innovation collaboration and the role of high-speed rail connections: Evidence from Chinese Co-patent data[J]. Regional Studies,2022,56(11): 1845−1857. DOI:10.1080/00343404.2021.2008340
引用本文
王巍, 姜智鑫. 通向可持续发展之路:数字化转型与企业异地合作创新*[J]. 财经研究, 2023, 49(1): 79-93.
导出参考文献,格式为: