大数据审计是将新兴信息技术应用于审计业务活动中的新型审计模式。近年来,随着大数据审计日益受到关注,探究大数据审计模式的价值创造机理与路径成为学术界和实务界面临的重要课题。但是大数据审计的相关研究还未形成清晰的理论体系,缺乏系统性的研究框架。基于此,本文梳理评述了2011—2023年发表在国内外权威期刊上关于大数据审计的文献。首先,系统阐述大数据审计的起源、概念内涵与模式比较。其次,基于“核心环节—关键要素—基础保障—根本目的”分析框架,梳理了大数据审计思维、大数据审计流程、大数据审计技术以及大数据审计应用的研究动态,揭示了大数据审计的内在逻辑,并结合实际调研补充了相关证据。最后,构建了大数据审计研究的理论框架,并从审计取证模式、审计预警机制、审计风险防范机制以及审计效果等不同角度提出未来展望,为进一步推动大数据审计研究提供参考。
大数据审计:理论框架、研究进展与未来展望
摘要
参考文献
1 黄佳佳, 李鹏伟, 徐超. 面向智慧审计的思维变革与审计平台构建研究[J]. 审计研究, 2023, (5): 11-20. DOI:10.3969/j.issn.1002-4239.2023.05.003
2 林斌, 林红, 孟小涵, 等. 基于大数据驱动范式的政策跟踪审计模型及其应用研究[J]. 审计研究, 2023, (1): 17-26. DOI:10.3969/j.issn.1002-4239.2023.01.004
3 刘国城, 王会金. 大数据审计平台构建研究[J]. 审计研究, 2017, (6): 36-41. DOI:10.3969/j.issn.1002-4239.2017.06.006
4 刘星, 牛艳芳, 唐志豪. 关于推进大数据审计工作的几点思考[J]. 审计研究, 2016, (5): 3-7.
5 彭冲, 胡重辉, 陈希晖. 大数据环境下的数据式绩效审计模式研究——以x市智慧停车规划与管理项目绩效审计为例[J]. 审计研究, 2018, (2): 24-31. DOI:10.3969/j.issn.1002-4239.2018.02.005
6 秦荣生. 大数据、云计算技术对审计的影响研究[J]. 审计研究, 2014, (6): 23-28.
7 秦荣生. 数据导向审计体系构建: 风险模型、方法体系与实现路径[J]. 审计研究, 2023, (5): 3-10. DOI:10.3969/j.issn.1002-4239.2023.05.002
8 王彪华. 大数据审计理论与实践研讨会综述[J]. 审计研究, 2020, (2): 52-56. DOI:10.3969/j.issn.1002-4239.2020.02.008
9 吴秋生, 郭檬楠. 国家审计督促国企资产保值增值的功能及其实现路径——基于十九大关于国企与审计管理体制改革要求的研究[J]. 审计与经济研究, 2018, 33(5): 12-20. DOI:10.3969/j.issn.1004-4833.2018.05.002
10 谢志华, 程恺之. 新技术与审计方法的变革[J]. 审计研究, 2023, (1): 3-11. DOI:10.3969/j.issn.1002-4239.2023.01.002
11 章轲, 张冬霁, 梁轩瑞, 等. 大数据审计中要做到的“三个把握”[J]. 审计研究, 2018, (5): 30-34. DOI:10.3969/j.issn.1002-4239.2018.05.005
12 张庆龙, 邢春玉, 芮柏松, 等. 新一代内部审计: 数字化与智能化[J]. 审计研究, 2020, (5): 113-121. DOI:10.3969/j.issn.1002-4239.2020.05.014
13 张雯, 杨奥, 张敏. 大数据技术在会计师事务所中的应用现状研究——基于会计师事务所的调查[J]. 中国注册会计师, 2023, (12): 53-61.
14 张永杰, 罗忠莲. 养老基金云审计系统的构建[J]. 审计研究, 2017, (3): 45-52. DOI:10.3969/j.issn.1002-4239.2017.03.007
16 Al-Ghanem W, Hegazy M. An empirical analysis of audit delays and timeliness of corporate financial reporting in Kuwait[J]. Eurasian Business Review, 2011, 1(1): 73-90. DOI:10.14208/BF03353799
17 Alles M, Gray G L. Incorporating big data in audits: Identifying inhibitors and a research agenda to address those inhibitors[J]. International Journal of Accounting Information Systems, 2016, 22: 44-59. DOI:10.1016/j.accinf.2016.07.004
18 Appelbaum D. Securing big data provenance for auditors: The big data provenance black box as reliable evidence[J]. Journal of Emerging Technologies in Accounting, 2016, 13(1): 17-36. DOI:10.2308/jeta-51473
19 Appelbaum D, Kogan A, Vasarhelyi M A. Big data and analytics in the modern audit engagement: Research needs[J]. Auditing: A Journal of Practice & Theory, 2017, 36(4): 1-27.
20 Appelbaum D, Showalter D S, Sun T, et al. A framework for auditor data literacy: A normative position[J]. Accounting Horizons, 2021, 35(2): 5-25. DOI:10.2308/HORIZONS-19-127
21 Appelbaum D A, Kogan A, Vasarhelyi M A. Analytical procedures in external auditing: A comprehensive literature survey and framework for external audit analytics[J]. Journal of Accounting Literature, 2018, 40(1): 83-101. DOI:10.1016/j.acclit.2018.01.001
22 Baldwin A A, Brown C E, Trinkle B S. Opportunities for artificial intelligence development in the accounting domain: The case for auditing[J]. Intelligent Systems in Accounting, Finance and Management, 2006, 14(3): 77-86.
23 Barr-Pulliam D, Brown-Liburd H L, Munoko I. The effects of person-specific, task, and environmental factors on digital transformation and innovation in auditing: A review of the literature[J]. Journal of International Financial Management & Accounting, 2022, 33(2): 337-374.
24 Brown-Liburd H, Issa H, Lombardi D. Behavioral implications of big data's impact on audit judgment and decision making and future research directions[J]. Accounting Horizons, 2015, 29(2): 451-468. DOI:10.2308/acch-51023
25 Cao M, Chychyla R, Stewart T. Big data analytics in financial statement audits[J]. Accounting Horizons, 2015, 29(2): 423-429. DOI:10.2308/acch-51068
26 Chang C J, Luo Y. Data visualization and cognitive biases in audits[J]. Managerial Auditing Journal, 2021, 36(1): 1-16. DOI:10.1108/MAJ-08-2017-1637
27 Chiu T, Jans M. Process mining of event logs: A case study evaluating internal control effectiveness[J]. Accounting Horizons, 2019, 33(3): 141-156. DOI:10.2308/acch-52458
28 Christ M H, Emett S A, Summers S L, et al. Prepare for takeoff: Improving asset measurement and audit quality with drone-enabled inventory audit procedures[J]. Review of Accounting Studies, 2021, 26(4): 1323-1343. DOI:10.1007/s11142-020-09574-5
29 Colombo T, Fröning H, Garcìa P J, et al. Optimizing the data-collection time of a large-scale data-acquisition system through a simulation framework[J]. The Journal of Supercomputing, 2016, 72(12): 4546-4572. DOI:10.1007/s11227-016-1764-1
30 Commerford B P, Dennis S A, Joe J R, et al. Man versus machine: Complex estimates and auditor reliance on artificial intelligence[J]. Journal of Accounting Research, 2022, 60(1): 171-201. DOI:10.1111/1475-679X.12407
31 Cooper L A, Holderness Jr D K, Sorensen T L, et al. Robotic process automation in public accounting[J]. Accounting Horizons, 2019, 33(4): 15-35. DOI:10.2308/acch-52466
32 Dagilienė L, Klovienė L. Motivation to use big data and big data analytics in external auditing[J]. Managerial Auditing Journal, 2019, 34(7): 750-782. DOI:10.1108/MAJ-01-2018-1773
33 Dzuranin A C, Mălăescu I. The current state and future direction of it audit: Challenges and opportunities[J]. Journal of Information Systems, 2016, 30(1): 7-20. DOI:10.2308/isys-51315
34 Earley C E. Data analytics in auditing: Opportunities and challenges[J]. Business Horizons, 2015, 58(5): 493-500. DOI:10.1016/j.bushor.2015.05.002
35 Eberhard K. The effects of visualization on judgment and decision-making: A systematic literature review[J]. Management Review Quarterly, 2023, 73(1): 167-214. DOI:10.1007/s11301-021-00235-8
36 El-Adaileh N A, Foster S. Successful business intelligence implementation: A systematic literature review[J]. Journal of Work-Applied Management, 2019, 11(2): 121-132. DOI:10.1108/JWAM-09-2019-0027
37 Fan W F, Geerts F, Tang N, et al. Conflict resolution with data currency and consistency[J]. Journal of Data and Information Quality (JDIQ), 2014, 5(1-2): 6.
38 Ferraz C, Finan F. Electoral accountability and corruption: Evidence from the audits of local governments[J]. American Economic Review, 2011, 101(4): 1274-1311. DOI:10.1257/aer.101.4.1274
39 Gan Q Q, Wang X M, Li J W, et al. Enabling online/offline remote data auditing for secure cloud storage[J]. Cluster Computing, 2021, 24(4): 3027-3041. DOI:10.1007/s10586-021-03303-6
40 Gepp A, Linnenluecke M K, O'Neill T J, et al. Big data techniques in auditing research and practice: Current trends and future opportunities[J]. Journal of Accounting Literature, 2018, 40(1): 102-115. DOI:10.1016/j.acclit.2017.05.003
41 Han H D, Shiwakoti R K, Jarvis R, et al. Accounting and auditing with blockchain technology and artificial intelligence: A literature review[J]. International Journal of Accounting Information Systems, 2023, 48: 100598. DOI:10.1016/j.accinf.2022.100598
42 Hezam Y A A, Anthonysamy L, Suppiah S D K. Big data analytics and auditing: A review and synthesis of literature[J]. Emerging Science Journal, 2023, 7(2): 629-642. DOI:10.28991/ESJ-2023-07-02-023
43 Hu K H, Hsu M F, Chen F H, et al. Identifying the key factors of subsidiary supervision and management using an innovative hybrid architecture in a big data environment[J]. Financial Innovation, 2021, 7(1): 10. DOI:10.1186/s40854-020-00219-9
44 Huang L, Zhou J Y, Lin J C, et al. View analysis of personal information leakage and privacy protection in big data era—based on Q method[J]. Aslib Journal of Information Management, 2022, 74(5): 901-927. DOI:10.1108/AJIM-05-2021-0144
45 Huerta E, Jensen S. An accounting information systems perspective on data analytics and big data[J]. Journal of Information Systems, 2017, 31(3): 101-114. DOI:10.2308/isys-51799
46 Issa H, Sun T, Vasarhelyi M A. Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation[J]. Journal of Emerging Technologies in Accounting, 2016, 13(2): 1-20. DOI:10.2308/jeta-10511
47 Jiang S. Research on big data audit based on financial sharing service model using fuzzy AHP[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(4): 8237-8246.
48 Kogan A, Mayhew B W, Vasarhelyi M A. Audit data analytics research—an application of design science methodology[J]. Accounting Horizons, 2019, 33(3): 69-73. DOI:10.2308/acch-52459
49 Kontogeorga G, Papapanagiotou A. Auditing ethics and corruption: Οld challenges and new trends for supreme audit institutions in turbulent times[J]. Journal of Public Budgeting, Accounting & Financial Management, 2023, 35(4): 474-492.
50 Kosara R. Presentation-oriented visualization techniques[J]. IEEE Computer Graphics and Applications, 2016, 36(1): 80-85. DOI:10.1109/MCG.2016.2
51 Lai C Z, Wang Y Z, Wang H, et al. A blockchain-based traceability system with efficient search and query[J]. Peer-to-Peer Networking and Applications, 2023, 16(2): 675-689. DOI:10.1007/s12083-022-01438-w
52 Lee K M, Lee K M, Lee S H. Remote data integrity check for remotely acquired and stored stream data[J]. The Journal of Supercomputing, 2018, 74(3): 1182-1201. DOI:10.1007/s11227-017-2117-4
53 Lindquist E A, Huse I. Accountability and monitoring government in the digital era: Promise, realism and research for digital-era governance[J]. Canadian Public Administration, 2017, 60(4): 627-656. DOI:10.1111/capa.12243
54 Lombardi D, Bloch R, Vasarhelyi M. The future of audit[J]. JISTEM-Journal of Information Systems and Technology Management, 2014, 11(1): 21-32.
55 Lonsdale J. Undertaking citizen-focused audit: Problems and practices[J]. The International Review of Administrative Sciences, 2007, 73(1): 131-136.
56 Manera V, Schouten B, Verfaillie K, et al. Time will show: Real time predictions during interpersonal action perception[J]. PLoS One, 2013, 8(1): e54949. DOI:10.1371/journal.pone.0054949
57 Manita R, Elommal N, Baudier P, et al. The digital transformation of external audit and its impact on corporate governance[J]. Technological Forecasting and Social Change, 2020, 150: 119751. DOI:10.1016/j.techfore.2019.119751
58 Meijer E, Bierman G. A co-relational model of data for large shared data banks[J]. Communications of the ACM, 2011, 54(4): 49-58. DOI:10.1145/1924421.1924436
59 Patel S, Shah M. A comprehensive study on implementing big data in the auditing industry[J]. Annals of Data Science, 2023, 10(3): 657-677. DOI:10.1007/s40745-022-00430-8
60 Pérez L F R, Blasco Á R. A Data science approach to cost estimation decision making-big data and machine learning: Un enfoque de ciencia de datos para la toma de decisiones en la estimación de costes-big data y aprendizaje automático[J]. Revista de Contabilidad-Spanish Accounting Review, 2022, 25(1): 45-57. DOI:10.6018/rcsar.401331
61 Qiu X P, Sun T X, Xu Y G, et al. Pre-trained models for natural language processing: A survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897. DOI:10.1007/s11431-020-1647-3
62 Rose A M, Rose J M, Sanderson K A, et al. When should audit firms introduce analyses of big data into the audit process?[J]. Journal of Information Systems, 2017, 31(3): 81-99. DOI:10.2308/isys-51837
63 Salijeni G, Samsonova-Taddei A, Turley S. Big data and changes in audit technology: Contemplating a research agenda[J]. Accounting and Business Research, 2019, 49(1): 95-119. DOI:10.1080/00014788.2018.1459458
64 Sookhak M, Yu F R, Zomaya A Y. Auditing big data storage in cloud computing using divide and conquer tables[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(5): 999-1012. DOI:10.1109/TPDS.2017.2784423
65 Sun T, Alles M, Vasarhelyi M A. Adopting continuous auditing: A cross-sectional comparison between China and the United States[J]. Managerial Auditing Journal, 2015, 30(2): 176-204. DOI:10.1108/MAJ-08-2014-1080
66 Vasarhelyi M A, Kogan A, Tuttle B M. Big data in accounting: An overview[J]. Accounting Horizons, 2015, 29(2): 381-396. DOI:10.2308/acch-51071
67 Warren Jr J D, Moffitt K C, Byrnes P. How big data will change accounting[J]. Accounting Horizons, 2015, 29(2): 397-407. DOI:10.2308/acch-51069
68 Yoon K, Hoogduin L, Zhang L. Big data as complementary audit evidence[J]. Accounting Horizons, 2015, 29(2): 431-438. DOI:10.2308/acch-51076
69 Zhang J, Yang X S, Appelbaum D. Toward effective big data analysis in continuous auditing[J]. Accounting Horizons, 2015, 29(2): 469-476. DOI:10.2308/acch-51070
引用本文
徐荣华, 朱婧, 戴欣瑜. 大数据审计:理论框架、研究进展与未来展望[J]. 外国经济与管理, 2024, 46(11): 122-137.
导出参考文献,格式为:
上一篇:领导替代理论前沿述评与展望
下一篇:秘密消费:研究进展与未来展望