技术效率、技术进步与中国农业全要素生产率的提高——基于国际比较的实证分析

车维汉,杨荣
（上海财经大学 国际工商管理学院,上海 200433）

摘要:文章运用DEA方法测算了包括中国在内的20个人均土地资源较少的国家以及美国、澳大利亚和新西兰3个新大陆国家1961－2005年的农业技术效率、技术进步及Malmquist生产率指数。实证结果显示:20世纪60年代以来,即使同样在人均土地资源较少的条件下,发达国家的农业全要素生产率的增长仍然快于发展中国家;在过去四十年里,中国农业全要素生产率的提高同土地以及劳动等农业资源的配置效率有紧密关系,值得注意的是,中国农业土地要素存在过量投入的情况,这或许与中国土地制度没有完全市场化有直接关系。

关键词:技术效率;技术进步;农业全要素生产率;国际比较

一、引言

中国是世界人口大国,人地资源矛盾相当突出。新中国成立以来,尤其是改革开放以来,中国农业的显著增长为世人瞩目。中国农业增长的效率如何?这一直为学术界所关注。本文拟以全要素生产率(total factor productivity,以下简称TFP)的测算为基础,通过国际比较的方法对上述问题进行考察,以期为推进我国农业的持续增长提供政策上的启示。

农业生产的跨国比较研究始于速水佑次郎和弗农·拉坦。近年来由于农业投入产出数据的完善,农业TFP已成为跨国农业比较的基准工具。农业TFP的核心涵义是指农业生产中各种投入要素的综合生产率,它是反应农业技术进步和农业资源配置效率的重要指标。目前,国外有许多学者通过运用数据包络方法(Data Envelopment Analyses,简称DEA)核算各国农业TFP并进行农业国际比较,如Fulginiti和Perrin(1997,1998)、Nin, Arndt和Preckel(2003)、Coelli
和 Prasada Rao(2003)运用 DEA 方法在发达国家和发展中国家之间进行比较研究，其研究结果为发展中国家改进农业增长效率提供了依据。目前国内使用 DEA 方法研究农业 TFP 的文献多集中在省际间的比较，⑤运用国际多边比较方法考察中国农业 TFP 变动的研究则较为少见。

本文选取了具有相同资源禀赋条件，即人均耕地面积都较小的国家作为分析对象，运用 DEA-Malmquist 指数方法来测算这些国家的农业 TFP 变动，试图总结中国农业 TFP 变动规律及背后的原因，对中国与发达国家在农业增长效率方面的差距进行较精确的分析。

二、研究方法与数据说明

（一）研究方法

Fare 等(1994)首次将 DEA-Malmquist 生产率指数方法在宏观经济分析中运用，并且还证明了 Malmquist 生产率指数与传统的索洛“剩余”法在内涵上是一致的。构造 Malmquist 生产率指数，须把各国看作生产决策单元，通过求解线性规划构造出每一期的最优技术前沿，将各国在该时期的产出与技术前沿进行比较，对各国的技术效率和技术进步进行测度。

1. 技术效率。假设在每一时期 \(t = 1, 2, \ldots, T \)，第 \(k = 1, 2, \ldots, K \) 个决策单元使用 \(n = 1, 2, \ldots, N \) 种投入 \(x_{it} \)，得到 \(m = 1, 2, \ldots, M \) 种产出 \(y_{it} \)。表示第期所有决策单元的投入和产出向量。生产技术 \(P_t \) 可以由产出和投入集合定义

\[
P_t = \{ y: y_i \leq z_i x_i, z_i \leq x_i, z_i \geq 0 \} ,
\]

该技术满足 Fare 等(1996)的投入要素强可处理条件。决策单元与当期最大可行产出⑥的距离函数为

\[
d_0(x_i, y_i) = \inf \{ \theta: (x_i, y_i/\theta) \in P_t \},
\]

该距离函数表示在给定投入 \(x_i \) 时，决策单元产出 \(y_i \) 最大可增加比例的倒数。这个距离函数值可以定义为技术效率，反映决策单元在当前技术下的生产效率。如果技术效率小于 1，意味着决策单元的生产点在技术前沿的内部，未实现有效率的生产；如果技术效率等于 1，则意味着决策单元的生产点在技术前沿上，实现了有效率的生产。在农业 TFP 的国际比较中，上述的决策单元可以用各国的农业生产部门进行代替，将各国的农业生产过程看作是一种技术流程，通过计算一国农业产出与技术前沿产出的距离函数，可以得到该国农业部门的技术效率值。

2. Malmquist 生产率指数及其分解。求解某一国家前后两个时期上述距离函数的比值可以确定该国农业 TFP 的变动。Fare 等(1994)用上述比值的几何平均值构造出衡量从 \(t \) 时期到 \(t + 1 \) 时期生产率变化的 Malmquist 指数，

\[
MPI = M_0(x_{i+1}, y_{i+1}, x_i, y_i) = \left[\frac{d_0(x_{i+1}, y_{i+1})}{d_0(x_i, y_i)} \right] \times \frac{d_0(x_{i+1}, y_{i+1})}{d_0(x_i, y_i)}
\]

在规模报酬不变假设下，可分解为技术进步和效率变化两项

\[
MPI = \left[\frac{d_0(x_{i+1}, y_{i+1})}{d_0(x_{i+1}, y_{i+1})} \right] \times \left(\frac{d_0(x_i, y_i)}{d_0(x_i, y_i)} \right)^{1/2}\times \frac{d_0(x_{i+1}, y_{i+1})}{d_0(x_i, y_i)} = EFFCH \times TECH.
\]

技术进步 (EFF-
CH) 测度的是该国在 t 时期和 t+1 时期相对技术效率的改善，反映了该国对技术前沿的“追赶”程度 (catching up)；技术进步 (TECH) 测度的则是该国在 t 时期和 t+1 时期技术的进步，反映了该国农业 TFP 变动对技术创新的依赖程度。另外，Fare 等 (1994) 还定义了技术创新国所需要达到的三个条件：\(\{ \text{TECH}^k > 1; D_0^k (x^{k,t+1}, y^{k,t+1}) > 1; D_1^k (x^{k,t+1}, y^{k,t+1}) = 1 \} \) 其中，k 为技术创新国。通过对 Malmquist 指数求解可以确定一国农业 TFP 的增长是源于对技术前沿国的学习和“追赶”还是自身的技术创新。

(二) 数据说明

1. 比较的国家及时间。根据中国平均面积较小的情况，本文对 20 个人均土地面积小于 10 公顷的国家：(荷兰、西班牙、希腊、德国、意大利、葡萄牙、马来西亚、巴基斯坦、印度尼西亚、毛里求斯、中国、菲律宾、印度、泰国、斯里兰卡、日本、韩国、越南、埃及和孟加拉) 和 3 个新大陆国家 (美国、澳大利亚、新西兰) 进行比较。计算人均土地面积所采用的土地指标为各国农地面积，包括永久性耕地和牧地；人口指标为各国从事农业经济活动的人口数。本文拟使用 1961 年之后的数据来进行比较，原因是中国在 1959－1961 年的农业危机之后开始重视粮食产量的产量和农业增产技术的研发。

2. 农业产出及投入。本文使用的 FAO 农业产出指数以 1999－2001 年为基期计算得出，计算方法为 Greary-Khamsi 多边比较方法。农业投入包括土地、机械、劳动、牲畜、化肥和灌溉。土地变量包括永久耕地和永久牧地，耕地还包括五年以下的休耕土地，分别的耕地只计算一次；拖拉机变量包括农业工具的轮式和履带拖拉机，将拖拉机的台数作为投入变量；劳动变量使用从事农业经济活动的人口数，从事农业经济活动的人口数是指从事或正在寻求从事农业生产的人口，包括农场雇主、农场雇员以及家庭农场中的家庭成员；将包括天然肥和人工肥之和作为化肥投入变量；本书使用的牲畜投入量为“标准牲畜”，这是一个虚拟变量 (由速水佑次郎和弗农·拉坦于 1970 年首次提出)，转换系数为：水牛和牛为 8.0；山羊、绵羊和猪为 1.0；以灌溉土地面积作为水利基础设施的替代变量。

以上各国农业数据来源于联合国粮农组织 FAO 的 AGROSTAT 数据库。

三、实证结果分析

本文使用 DEA2.1 软件计算 malmquist 指数，一共有 23 个国家的 45 年度投入产出数据，需要计算 23×(3×45－2) 个线性规划。关于这 23 个国家的农业 TFP 的分析将涉及农业技术效率 (Technical efficiency，简称 TE)、技术效率变化 (Efficiency change，简称 EFFCH)、技术进步 (Technical change，简称 TECH) 以及 malmquist 生产率指数这四个指标。本文主要关注中国的农业增长绩效，因此，在分析的时间上划分为四个阶段：1961－1970
年，1971—1980 年，1981—1990 年和 1991—2005 年。在空间上，将不同特征的国家进行分组来比较：中国和印度由于在人口总量及人均土地规模方面具有相似性，所以单独列出进行比较；第一组国家是人均土地面积大于 2 公顷的国家，包括西班牙、荷兰、希腊、德国、意大利、葡萄牙以及马来西亚；第二组国家是人均土地面积小于 2 公顷的国家，包括孟加拉、埃及、印度尼西亚、日本、韩国、毛里求斯、巴基斯坦、菲律宾、斯里兰卡、泰国和越南；最后一组则是包括澳大利亚、新西兰和美国的新大陆国家。

(一) 各国农业技术效率值 (TE)

Fare 等 (1994) 指出，宏观领域技术效率值的高低可以反映一国生产能力是否得到充分利用及经济结构是高度管制的还是竞争性的。农业技术效率值可引申为判断一个国家在农业领域内是否有效配置农业生产资源的标准。如果该指标小于 1，意味着一国农业生产位于最佳技术前沿之内，在当前的要素投入水平上该国没有实现最优的农业生产，农业生产资源没有得到有效的配置；如果该指标等于 1，则意味着一国农业生产处于最佳技术前沿之上，农业领域的资源配置有效率。

表 1 各国不同代表年份的技术效率值

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>澳大利亚</td>
<td>0.964</td>
<td>1.000</td>
<td>0.916</td>
<td>1.000</td>
<td>0.841</td>
<td>0.787</td>
<td></td>
</tr>
<tr>
<td>孟加拉</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>中国</td>
<td>1.000</td>
<td>0.784</td>
<td>0.602</td>
<td>0.664</td>
<td>0.861</td>
<td>0.774</td>
<td></td>
</tr>
<tr>
<td>埃及</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>德国</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>希腊</td>
<td>1.000</td>
<td>1.000</td>
<td>0.984</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>印度</td>
<td>1.000</td>
<td>0.717</td>
<td>0.596</td>
<td>0.605</td>
<td>0.518</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>印度尼西亚</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.998</td>
<td>0.990</td>
<td>0.990</td>
<td></td>
</tr>
<tr>
<td>意大利</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>日本</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>韩国</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>马来西亚</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>毛里求斯</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>荷兰</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>新西兰</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>巴基斯坦</td>
<td>1.000</td>
<td>1.000</td>
<td>0.684</td>
<td>0.643</td>
<td>0.627</td>
<td>0.618</td>
<td></td>
</tr>
<tr>
<td>菲律宾</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>葡萄牙</td>
<td>1.000</td>
<td>1.000</td>
<td>0.735</td>
<td>0.857</td>
<td>0.746</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td>西班牙</td>
<td>0.990</td>
<td>0.912</td>
<td>1.000</td>
<td>1.000</td>
<td>0.938</td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td>斯里兰卡</td>
<td>0.774</td>
<td>0.698</td>
<td>0.803</td>
<td>0.766</td>
<td>0.746</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>泰国</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.788</td>
<td>0.936</td>
<td>0.824</td>
<td></td>
</tr>
<tr>
<td>美国</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>越南</td>
<td>1.000</td>
<td>0.960</td>
<td>1.000</td>
<td>1.000</td>
<td>0.705</td>
<td>0.761</td>
<td></td>
</tr>
</tbody>
</table>
本文的计算结果显示，第一，技术效率值仅反映农业生产资源的配置效率，与人均土地面积的大小关系不大。在人均土地资源丰裕的三个新大陆国家中，美国和新西兰的技术效率始终为1，而澳大利亚的技术效率值则在0.68至1之间波动；人均土地面积超过2公顷的国家，西班牙和葡萄牙的技术效率值近年来一直小于1，并呈逐年递减的趋势，而荷兰、希腊、德国、意大利和马来西亚的技术效率值则始终保持为1；人均土地面积小于2公顷的国家，日本、韩国、孟加拉、毛里求斯以及菲律宾的技术效率值为1，而中国、印度、印度尼西亚、巴基斯坦、斯里兰卡、泰国以及越南的技术效率值则小于1。第二，中国和印度不仅在大部分年份中技术效率都小于1，而且技术效率值距离1比较远。尽管中国在1980年之后技术效率有了明显提高，但技术效率值始终小于1，说明中国农业生产处在无效率的状态，农业资源没有得到良好的配置以及充分的利用。例如，2005年中国的技术效率值为0.774，这意味着在2005年的农业投入水平之下，中国农业产出至少还应再增加12.6%。作为同中国一样的人口大国，印度的农业生产效率表现最差，农业技术效率值在整个研究期间呈持续下降的趋势。

表2 Malmquist指数变动及其分解

<table>
<thead>
<tr>
<th>时间</th>
<th>国家</th>
<th>MI</th>
<th>EC</th>
<th>TC</th>
<th>时间</th>
<th>国家</th>
<th>MI</th>
<th>EC</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1970年</td>
<td>总体平均</td>
<td>0.98</td>
<td>0.988</td>
<td>0.994</td>
<td>1981-1990年</td>
<td>总体平均</td>
<td>1.005</td>
<td>1.004</td>
<td>1.002</td>
</tr>
<tr>
<td>中国</td>
<td>0.973</td>
<td>0.976</td>
<td>1.001</td>
<td></td>
<td>中国</td>
<td>1.011</td>
<td>1.011</td>
<td>1.002</td>
<td></td>
</tr>
<tr>
<td>印度</td>
<td>0.959</td>
<td>0.966</td>
<td>0.997</td>
<td></td>
<td>印度</td>
<td>0.996</td>
<td>1.006</td>
<td>0.994</td>
<td></td>
</tr>
<tr>
<td>第1组</td>
<td>0.999</td>
<td>0.999</td>
<td>1.000</td>
<td></td>
<td>第1组</td>
<td>1.011</td>
<td>1.003</td>
<td>1.008</td>
<td></td>
</tr>
<tr>
<td>第2组</td>
<td>0.97</td>
<td>0.996</td>
<td>0.974</td>
<td></td>
<td>第2组</td>
<td>0.985</td>
<td>0.998</td>
<td>0.988</td>
<td></td>
</tr>
<tr>
<td>第3组</td>
<td>0.999</td>
<td>1.002</td>
<td>0.997</td>
<td></td>
<td>第3组</td>
<td>1.022</td>
<td>1.004</td>
<td>1.019</td>
<td></td>
</tr>
<tr>
<td>1971-1980年</td>
<td>总体平均</td>
<td>0.988</td>
<td>0.99</td>
<td>0.999</td>
<td>1991-2005年</td>
<td>总体平均</td>
<td>1.013</td>
<td>0.997</td>
<td>1.016</td>
</tr>
<tr>
<td>中国</td>
<td>0.978</td>
<td>0.976</td>
<td>1.004</td>
<td></td>
<td>中国</td>
<td>1.026</td>
<td>1.011</td>
<td>1.015</td>
<td></td>
</tr>
<tr>
<td>印度</td>
<td>0.98</td>
<td>0.983</td>
<td>1.000</td>
<td></td>
<td>印度</td>
<td>0.997</td>
<td>0.985</td>
<td>1.014</td>
<td></td>
</tr>
<tr>
<td>第1组</td>
<td>0.997</td>
<td>0.998</td>
<td>0.999</td>
<td></td>
<td>第1组</td>
<td>1.02</td>
<td>0.996</td>
<td>1.024</td>
<td></td>
</tr>
<tr>
<td>第2组</td>
<td>0.983</td>
<td>0.998</td>
<td>0.985</td>
<td></td>
<td>第2组</td>
<td>1.009</td>
<td>0.997</td>
<td>1.013</td>
<td></td>
</tr>
<tr>
<td>第3组</td>
<td>1.004</td>
<td>0.997</td>
<td>1.006</td>
<td></td>
<td>第3组</td>
<td>1.013</td>
<td>0.997</td>
<td>1.016</td>
<td></td>
</tr>
</tbody>
</table>

注：MI为Malmquist指数；EC为效率变化；TC为技术进步。

（二）农业Malmquist生产率指数的变动及其分解

1. 各国农业Malmquist生产率指数的年均增长及其分解。根据Malmquist生产率指数的计算方法，Malmquist指数值大于1，说明农业增长的绩效改善；反之，则意味着农业增长绩效恶化。在规模报酬不变的条件下，Malmquist指数可以分解为EFFCH和TECH，据此可以判断一国农业TFP的变动是源于效率改善还是技术进步。

表2显示了不同特征国家Malmquist生产率指数及其分解的EFFCH和
TECH。第一，从总体上看23个国家的malquist指数和TECH指数随时间推移在不断提高。同样是人均土地资源较少的条件，发达国家的农业增长绩效好于发展中国家，主要原因是技术进步的速度较快，而效率损失相对较少。第二，中国在1990－2005年农业TFP年均增长率达2.6%，但在整个考察期间，这23个国家中农业TFP平均增长率最高的国家是德国、荷兰和美国，其中荷兰的农业TFP年均增长1.9%，德和国美国均为1.8%。美国和荷兰农业绩效历来较好，值得注意的是德国，美国的农业绩效非常好，这一研究结果与Trueblood和Coggins（2001）所得出结论也是一致的。但目前学术界对德国的农业发展状况关注却不多。第三，研究中的大部分国家在20世纪60－70年代农业技术效率均出现恶化，而在80年代后又普遍呈现了技术效率改善和技术进步显著的特点，中国农业增长绩效的恶化与改善同世界其他国家的变动趋势具有一致性。中国和印度两个农业和人口大国，在60－70年代的EFFCH不断下降，这说明两国农业生产效率的恶化是导致两国TFP下降的主要原因。20世纪80年代，效率的改善是中国农业全要素生产率增长的主要原因，而在90年代，效率改善和技术进步则共同成为推动中国农业全要素生产率增长的因素。但印度农业效率的低下始终阻碍着印度农业TFP的提高。

表3 不同时期农业的技术创新国、技术追赶国

<table>
<thead>
<tr>
<th>时间</th>
<th>创新国</th>
<th>追赶国</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961－1970年</td>
<td>荷兰、德国、美国、埃及、葡萄牙、马来西亚</td>
<td>澳大利亚</td>
</tr>
<tr>
<td>1971－1980年</td>
<td>德国、意大利、毛里求斯、荷兰、新西兰、菲律宾、西班牙、美国</td>
<td>西班牙、斯里兰卡、越南</td>
</tr>
<tr>
<td>1981－1990年</td>
<td>德国、日本、马来西亚、毛里求斯、荷兰、新西兰、美国</td>
<td>澳大利亚、中国、埃及、印度、葡萄牙、西班牙</td>
</tr>
<tr>
<td>1991－2005年</td>
<td>荷兰、德国、美国、马来西亚、埃及、意大利、毛里求斯、菲律宾、日本、孟加拉、希腊</td>
<td>中国®、泰国、印度尼西亚</td>
</tr>
</tbody>
</table>

2. 农业技术创新国与追赶国。按照Fare等（1994）的定义，技术创新国应满足三个条件：第一，TECH指数始终大于1，这表明该国的农业技术在不断进步；第二，如果以t时期技术为参考技术，该国农业t+1期产出与t期最大可行产出（Maximum feasible production）的距离函数值大于1，这表明该国在t+1时期由于技术进步，所以使得产出突破了前期的最大可行产出；第三，如果以t+1期技术为参考技术，该国农业t+1期产出与t+1期最大可行产出的距离函数值等于1，这表明在t+1时期，该国仍然处在技术前沿之上。在各个时期满足以上三个条件的国家因为其不断推动技术前沿的进步被称为技术创新国。同时，技术追赶国的特征是EFFCH大于1，这说明追赶者的技术效率出现改善。

本文研究结果显示：荷兰、德国、美国始终处在技术创新国的位置；中国在
20 世纪 80 年代之后是农业技术的追赶期。改革开放以来中国水稻、小麦和玉米等农作物的栽培技术不断突破，但在技术进步年增长率方面，相比荷兰、美国和德国这样的农业技术前沿国来说，差距仍然不小（见图 1）；人均土地面积较小的发展中国家，如孟加拉、印度尼西亚、菲律宾、泰国、越南等国，在 60—80 年代农业技术进步不显著，这与 Fulginiti 和 Perrin（1997）对包括几个重要的东南亚国家在内的 18 个国家家的农业 TFP 的研究结果一致。但 90 年代以来，这些国家技术进步非常迅速，原因可能是 90 年代以来上述发展中国家经济增长较快，农业技术在研发投入上得到了较好的支持。

四、中国农业增长的绩效分析

（一）中国农业 TFP 的变动特征

如果将上述计算结果中的中国农业的 TECH、EFFCH 与农业 TFP 的年度变动均以 1961 年作为基期，令 1961 年的值为 100 进行指数化，®并分别定义为农业 TFP 指数、技术进步指数以及技术效率指数，则结果如图 2 显示：中国农业 TFP 指数和技术进步指数的变动趋势在 1963 年之后出现了明显的背离，而农业 TFP 指数和技术效率指数则存在基本重合的变动趋势。可以认为中国农业 TFP 指数变动的主要影响因素是农业技术效率，农业资源配置的效率是中国农业 TFP 变动的主要影响因素。

（二）中国农业资源的配置

运用 DEA 计算各国的技术效率值的过程中，我们也核算各时期农业各投入的松弛变量（Slack）。按照 Cooper-Gallegos 定理，在每一期中必须有一个投入要素是零松弛的。本文的实证结果中，化肥投入是零松弛的，即中国农业充分使用了化肥投入，与林毅夫（1992）得出的中国农业增长主要依赖化肥投入增长的论断相似。重要的是，实证结果并没有如一般人们所设想的，土地是零松弛投入变量。相反地，中国土地投入、劳动投入以及灌溉投入均存在松弛，即土地、劳动及农业灌溉投入均存在过度投入的情况。

中国农业劳动
过度投入的原因是比较直观的，中国农业人口在建国之后始终增长较快，但城镇化水平没有得到相应提高，农村中的剩余人口较多。劳动投入在 45 年中有 42 年存在过度投入的状况，但农业劳动过度投入比例呈现先

图 2 中国农业 TFP、农业技术进步与
农业效率改善指数变动情况
提高。土地和劳动的低流动性导致中国农业的技术效率无法快速提高，从而使
得中国农业尽管技术进步显著但农业 TFP 的增长幅度却不大。因此，本文认为
提高土地和劳动的流动性应成为今后改善中国农业增长率的主要途径。

五、结 论

本文使用联合国粮农组织（FAO）各国农业投入产出的数据库，运用 DEA
方法测算包括中国在内的 20 个人均土地资源较少的国家，以及美国、澳大利
亚和新西兰 3 个新大陆国家的农业全要素生产率 malmquist 指数，对 1961—
2005 年上述 23 个国家的农业 TFP 的增长进行研究。我们发现：第一，同样
是人均土地资源较少的条件，发达国家的农业增长绩效好于发展中国家，除美
国和荷兰外，德国的农业增长绩效比较突出，这值得我们进一步研究。第二，
研究中的大部分国家在 20 世纪 60—70 年代农业技术效率出现恶化，而在 80
年代后又普遍呈现了技术效率改善和技术进步显著的特点，中国农业增长绩
效的恶化与改善同世界其他国家的变动趋势具有一致性。第三，中国农业 TFP
变动特征说明，农业 TFP 的提高同农业领域内的资源配置效率有显著的
关系，这和理论界普遍认为的技术进步是促进农业 TFP 增长的主要因素的
观点不完全一致；中国农业中土地和劳动的低流动性导致了中国农业生产资
源的配置效率较低，影响了中国农业增长绩效的改善。上述结论表明中国农
业领域需要新的制度供给以促进土地和劳动的进一步流动，当然这有待于学
术界进一步深入研究。

注释：
① 主要文献有：顾海、孟令杰（2002）、江激宇、李静、孟令杰（2005）、陈卫平（2006）、李录堂、
薛继亮（2008）。
② 此处的最大可生产出集的边界即为技术前沿。由于仅从投入和产出数量角度定义技
术，因此只要决策单元在既定投入数量下达到最大产出，该决策单元就可以称作技术领
先者，而不管决策单元以何种形式进行生产。
③ 速水佑次郎和弗农·拉坦曾选取了 44 个不同人均土地规模的国家来进行农业劳动生
产率和土地生产率的比较，本文在此基础上选取 20 个人均土地面积小于 10 公顷的国
家进行比较。
④ 限于篇幅，此处难于一一列出计算结果。
⑤Greary-Khamis 多边比较方法是 Greary 于 1958 年建立，后经 Khamis 不断完善，现在成
为联合国、欧盟以及 OECD 等国际组织广泛使用的国际比较项目中的总产出计算方法。该
方法主要依赖参考价格和购买平价两个工具，具体推导过程由 D.S.Prasada Rao
（1993）给出。联合国粮农组织使用 Greary-Khamis 方法计算国际农产品的可比较价格
涉及全世界约 130 个国家 185 种农产品，其研究水平较高。
⑥ 此处应使用农业劳动投入的流量数据，但由于目前没有对此数据有好的统计方法，所
以本文以各国从事农业经济活动的人口数据作为替代变量，使用农业人口数可能会过高估计农业劳动投入量，过高估计的程度依赖于一国经济发展水平。
⑦中国在1981—2005年是较好的技术追赶者，技术效率（EFFCH）大于1且技术进步（TECHI）大于1，技术进步的增幅也较大。
⑧这实际上是计算出了malquist指数的累计变化。

参考文献：
[9]Fare R，Grosskopf S，Norris M，Zhang Z. Productivity growth, technical progress，
and efficiency change in industrialized countries[J]. American Economic Review, 1994, 84: 66－83。
Technical Efficiency, Technical Progress and the Increase of Agricultural Total Factor Productivity in China: Empirical Study Based on International Comparisons

CHE Wei-han, YANG Rong

(School of International Business Administration, Shanghai University of Finance and Economics, Shanghai 200433, China)

Abstract: By DEA, the paper measures the technical efficiency, technical progress and Malmquist productivity index of 20 countries including China with low land resources per capita, USA, Australia and New Zealand from 1961 to 2005. The empirical results indicate that the increase of agricultural TFP of developed countries is faster than the one of developing countries since 1960s. The increase of agricultural TFP in China depends on the allocation efficiency of agricultural resources. It is worth noting that the agricultural land factor is excessively input, which may be related to the incomplete marketization of land system in China.

Key words: technical efficiency; technical progress; agricultural total factor productivity; international comparison

irality (RWBC) in network economics, the paper regards China’s macroeconomic as an economic network and then ascertains China’s mainstay industries in nowadays according to the RWBC value of different industries and the final adopted RWBC based on the latest input-output table of China. At the same time, the paper also analyzes the orientation and countermeasures of the upgrading of the industrial structure in long-term through the comparison analysis on the RWBC of different industries in China and America.

Key words: industry; RWBC; industrial-structure-upgrading